Recursively returning a concatenation of Future.Right - scala

In the recursive recHelper method below I need to return a list of Futures if all the elements returned Right else a Future Left. Problem is that I cannot concatenate the results. How to make this code work?
def either1 (i:Int): Future[Either[String,Int]] = Future {
if (i<3)
Right(i*2)
else
Left("error 1")
}
def either2 (i:Int): Future[Either[String,Int]] = Future {
if (i<3)
Right(i*2)
else
Left("error 2")
}
val seq = Seq (1,1,2,2)
def recHelper(remaining: List[Int]): Future[Either[String, Seq[Int]]] = {
remaining match {
case Nil => Nil
case h :: t => (if (h % 2 == 0) either1(h) else either2(h)).map {
headEither =>
headEither match {
case Left(s) => Future { Left(s) }
case Right(n) => Future { n :: recHelper(t) :: Nil } /// ERROR
}
}
}
}
recHelper(seq.toList)

The Nil => Nil case indicates that you should read up again what the Future and what the Either monads do: Nil is inferred to be of type List[Int]. It's missing two applications of a monadic unit, namely:
You forgot to wrap it into a Right to make it Either[List[Int]]
You forgot to wrap it into a Future, to make it Future[Either[List[Int]]
Same applies for the other cases. Here is a version that works:
import scala.concurrent._
import scala.util._
import scala.concurrent.ExecutionContext.Implicits.global
def either1(i: Int): Future[Either[String, Int]] = Future {
if (i<3) Right(i*2)
else Left("error 1")
}
def either2(i: Int): Future[Either[String, Int]] = Future {
if (i<3) Right(i*2)
else Left("error 2")
}
val seq = Seq(1, 1, 2, 2)
def recHelper(remaining: List[Int]): Future[Either[String, List[Int]]] = {
remaining match {
case Nil => Future { Right(Nil) }
case h :: t => for {
hEith <- (if (h % 2 == 0) either1(h) else either2(h))
res <- (hEith match {
case Left(s) => Future { Left(s) }
case Right(n) => for {
tEith <- recHelper(t)
} yield tEith.map(n :: _)
})
} yield res
}
}
recHelper(seq.toList)
You can't build a complex nested for-comprehension with two stacked monads by accident. I can only again strongly recommend to take a look at Scala Cats and EitherT. They've build the monad transformer libraries not (only) for fun: it's actually quite painful to deal with two stacked monads simultaneously.

An alternate solution:
def recHelper(remaining :Seq[Int]
,acc :Seq[Int] = Seq()
) :Future[Either[String, Seq[Int]]] = remaining match {
case Seq() => Future(Right(acc))
case h +: t => (if (h % 2 == 0) either1(h) else either2(h)).flatMap {
case Left(s) => Future(Left(s))
case Right(n) => recHelper(t, n +: acc)
}
}
recHelper(seq)
//res0: Future[Either[String,Seq[Int]]] = Future(Right(List(4, 4, 2, 2)))

Related

How to create an Akka Stream Source that generates items recursively

I'm trying to figure out how to create an Akka Streams source that generates many Seq[Int].
Basically, given an int n I want to generate all of the Seq[Int] of 1 to n
Here's some code that does this:
def combinations(n: Int): Seq[Seq[Int]] = {
def loop(acc: (Seq[Int], Seq[Seq[Int]]),
remaining: Seq[Int]): Seq[Seq[Int]] = {
remaining match {
case s if s.size == 1 => {
val total: Seq[Seq[Int]] = acc._2
val current: Seq[Int] = acc._1
total :+ (current :+ s.head)
}
case _ => {
for {
x <- remaining
comb <- loop((acc._1 :+ x, acc._2), remaining.filter(_ != x))
} yield comb
}
}
}
loop((Seq(), Seq()), (1 to n))
}
This works fine up to 10... then it blows up because it runs out of memory. Since I just want to process each of them and don't need to keep them all in memory, I thought... Akka Streams. But I'm at a loss for how to turn this into a Source that produces each combination so I can process them. Basically there where it's appending to total I would produce another item onto the stream.
Here is a solution that uses the Johnson-Trotter algorithm for permutations. tcopermutations creates a LazyList that can be evaluated as needed. For more permutations, just pass a different value to printNIterations.
The reason for using the Johnson-Trotter algorithm is that it breaks the recursive structure of the permutation finding algorithm. That's important for being able to evaluate successive instances of the permutation and storing them in some kind of lazy list or stream.
object PermutationsTest {
def main(args: Array[String]) = {
printNIterations(50, tcopermutations(5).iterator)
}
def printNIterations(n: Int, it: Iterator[Seq[Int]]): Unit = {
if (n<=0) ()
else {
if (it.hasNext) {
println(it.next())
printNIterations(n - 1, it)
} else ()
}
}
def naivepermutations(n: Int): Seq[Seq[Int]] = {
def loop(acc: Seq[Int], remaining: Seq[Int]): Seq[Seq[Int]] = {
remaining match {
case s if s.size == 1 => {
val current: Seq[Int] = acc
Seq((current :+ s.head))
}
case _ => {
for {
x <- remaining
comb <- loop(acc :+ x, remaining.filter(_ != x))
} yield comb
}
}
}
loop(Seq(), (1 to n))
}
def tcopermutations(n: Int): LazyList[Seq[Int]] = {
val start = (1 to n).map(Element(_, Left))
def loop(v: Seq[Element]): LazyList[Seq[Element]] = {
johnsonTrotter(v) match {
case Some(s) => v #:: loop(s)
case None => LazyList(v)
}
}
loop(start).map(_.map(_.i))
}
def checkIfMobile(seq: Seq[Element], i: Int): Boolean = {
val e = seq(i)
def getAdjacent(s: Seq[Element], d: Direction, j: Int): Int = {
val adjacentIndex = d match {
case Left => j - 1
case Right => j + 1
}
s(adjacentIndex).i
}
if (e.direction == Left && i == 0) false
else if (e.direction == Right && i == seq.size - 1) false
else if (getAdjacent(seq, e.direction, i) < e.i) true
else false
}
def findLargestMobile(seq: Seq[Element]): Option[Int] = {
val mobiles = (0 until seq.size).filter{j => checkIfMobile(seq, j)}
if (mobiles.isEmpty) None
else {
val folded = mobiles.map(x=>(x,seq(x).i)).foldLeft(None: Option[(Int, Int)]){ case (acc, elem) =>
acc match {
case None => Some(elem)
case Some((i, value)) => if (value > elem._2) Some((i, value)) else Some(elem)
}
}
folded.map(_._1)
}
}
def swapLargestMobile(seq: Seq[Element], index: Int): (Seq[Element], Int) = {
val dir = seq(index).direction
val value = seq(index).i
dir match {
case Right =>
val folded = seq.foldLeft((None, Seq()): (Option[Element], Seq[Element])){(acc, elem) =>
val matched = elem.i == value
val newAccOpt = if (matched) Some(elem) else None
val newAccSeq = acc._1 match {
case Some(swapMe) => acc._2 :+ elem :+ swapMe
case None => if (matched) acc._2 else acc._2 :+ elem
}
(newAccOpt, newAccSeq)
}
(folded._2, index + 1)
case Left =>
val folded = seq.foldRight((None, Seq()): (Option[Element], Seq[Element])){(elem, acc) =>
val matched = elem.i == value
val newAccOpt = if (matched) Some(elem) else None
val newAccSeq = acc._1 match {
case Some(swapMe) => swapMe +: elem +: acc._2
case None => if (matched) acc._2 else elem +: acc._2
}
(newAccOpt, newAccSeq)
}
(folded._2, index - 1)
}
}
def revDirLargerThanMobile(seq: Seq[Element], mobile: Int) = {
def reverse(e: Element) = {
e.direction match {
case Left => Element(e.i, Right)
case Right => Element(e.i, Left)
}
}
seq.map{ elem =>
if (elem.i > seq(mobile).i) reverse(elem)
else elem
}
}
def johnsonTrotter(curr: Seq[Element]): Option[Seq[Element]] = {
findLargestMobile(curr).map { m =>
val (swapped, newMobile) = swapLargestMobile(curr, m)
revDirLargerThanMobile(swapped, newMobile)
}
}
trait Direction
case object Left extends Direction
case object Right extends Direction
case class Element(i: Int, direction: Direction)
}

Incorrect result in sequence of futures/either

Given the code below that combines sequence of futures and Either, I always get printed "not OK", why is that if the result is a List?
def future1 (i: Int) = Future { if (i==0) Right(1) else Left("error 1") }
def future2 (i: Int) = Future { if (i==0) Right(2) else Left("error 2") }
...
...
val f1 = future1(0)
val f2 = future2(0)
val f3 = Future.sequence(Seq(f1, f2))
f3.map { result =>
result match {
case List(r) => println("ok")
case _ => println("not OK)
}
}
case List(r) would only match a list with one element which would be then bound to r.
To check if the result is an instance of type List use
f3.map { result =>
result match {
case r: List[_] => println("ok")
case _ => println("not OK)
}
}

Break loop if Either function returns Left

In the following code, what I need is to stop processing the loop if either either1 or either2 return Left, and if that happens then mainFunction has to return Left as well. Also, the string returned by either1.Left or either2.Left needs to be returned by mainFunction.Left. How to make this work?
def either1 (i:Int): Future[Either[String,Int]] = Future {
if (i<3)
Right(i*2)
else
Left("error 1")
}
def either2 (i:Int): Future[Either[String,Int]] = Future {
if (i>3)
Right(i*2)
else
Left("error 2")
}
val seq = Seq ( 1,1,2,2,3,4,5 )
def mainFunction: Future[Either[String,Int]] = Future {
val seq2 = seq.map { number =>
if (number % 2 == 0)
either1(number) // <-- this needs to break the loop if it returns Left
else
either2(number) // <-- this needs to break the loop if it returns Left
}
Right(seq2.length) // <-- seq2 is a sequence of Futures
}
The code below keeps iterating over the sequence until it encounters the first error, and returns the error message, or the fixed number 42 (that's the "doesn't matter what it returns"-requirement).
import scala.concurrent._
import scala.util._
import scala.concurrent.ExecutionContext.Implicits.global
def either1(i: Int): Future[Either[String,Int]] = Future {
if (i < 3) Right(i * 2)
else Left("error 1")
}
def either2 (i:Int): Future[Either[String,Int]] = Future {
if (i > 3) Right(i * 2)
else Left("error 2")
}
val seq = Seq(1, 1, 2, 2, 3, 4, 5)
val doesntMatter = 42
/** Returns either first error message returned by `either1` or
* `either2`, or the fixed number `doesntMatter`.
*/
def mainFunction: Future[Either[String, Int]] = {
def recHelper(remaining: List[Int]): Future[Either[String, Int]] = {
remaining match {
case Nil => Future { Right(doesntMatter) }
case h :: t => (if (h % 2 == 0) either1(h) else either2(h)).flatMap {
headEither =>
headEither match {
case Left(s) => Future { Left(s) }
case Right(n) => recHelper(t)
}
}
}
}
recHelper(seq.toList)
}
val res = mainFunction
Thread.sleep(2000)
println(res) // Future(Success(Left(error 2)))
If you do this significantly more often than once, consider taking a look at Scala Cats' EitherT, and also at the method tailRecM defined specifically for such use cases on all monadic typeclasses.
In Scala the standard collections don’t provide a method for that.
You can user either scala.util.control.Breaks or you have to write the
recursion, something like this
val seq = Seq(1, 1, 2, 2, 3, 4, 5)
def either1(i: Int): Either[String, Int] = {
if (i < 3) Right(i * 2)
else Left("error 1")
}
def either2(i: Int): Either[String, Int] = {
if (i > 3) Right(i * 2)
else Left("error 2")
}
def rec(seq: Seq[Int], acc: Seq[Either[String, Int]]): Seq[Either[String, Int]] = seq match {
case Nil => acc
case x :: xs =>
val xx = if (x % 2 == 0) either1(x) else either2(x)
xx match {
case Left(_) => acc
case Right(value) => rec(xs, acc :+ Right(value))
}
}
rec(seq, Seq())
I generally avoid recursive functions if a library function will do what I want.
In this case we can use takeWhile to take all the leading elements that are Right. However the map call will still process every element of the Seq so you need to use view to evaluate this lazily:
val seq2 = seq.view.map { number =>
if (number % 2 == 0)
either1(number)
else
either2(number)
}.takeWhile(_.isRight)
You still have the the problem that your either functions actually return a Future and therefore can't be tested for Left or Right until they complete.

Scala generic "string split" method

If I were splitting a string, I would be able to do
"123,456,789".split(",")
to get
Seq("123","456","789")
Thinking of a string as a sequence of characters, how could this be generalized to other sequences of objects?
val x = Seq(One(),Two(),Three(),Comma(),Five(),Six(),Comma(),Seven(),Eight(),Nine())
x.split(
number=>{
case _:Comma => true
case _ => false
}
)
split in this case doesn't exist, but it reminds me of span, partition, groupby, but only span seems close, but it doesn't handle leading/ending comma's gracefully.
implicit class SplitSeq[T](seq: Seq[T]){
import scala.collection.mutable.ListBuffer
def split(sep: T): Seq[Seq[T]] = {
val buffer = ListBuffer(ListBuffer.empty[T])
seq.foreach {
case `sep` => buffer += ListBuffer.empty
case elem => buffer.last += elem
}; buffer.filter(_.nonEmpty)
}
}
It can be then used like x.split(Comma()).
The following is 'a' solution, not the most elegant -
def split[A](x: Seq[A], edge: A => Boolean): Seq[Seq[A]] = {
val init = (Seq[Seq[A]](), Seq[A]())
val (result, last) = x.foldLeft(init) { (cum, n) =>
val (total, prev) = cum
if (edge(n)) {
(total :+ prev, Seq.empty)
} else {
(total, prev :+ n)
}
}
result :+ last
}
Example result -
scala> split(Seq(1,2,3,0,4,5,0,6,7), (_:Int) == 0)
res53: Seq[Seq[Int]] = List(List(1, 2, 3), List(4, 5), List(6, 7))
This is how I've solved it in the past, but I suspect there is a better / more elegant way.
def break[A](xs:Seq[A], p:A => Boolean): (Seq[A], Seq[A]) = {
if (p(xs.head)) {
xs.span(p)
}
else {
xs.span(a => !p(a))
}
}

How to check if there's None in List[Option[_]] and return the element's name?

I have multiple Option's. I want to check if they hold a value. If an Option is None, I want to reply to user about this. Else proceed.
This is what I have done:
val name:Option[String]
val email:Option[String]
val pass:Option[String]
val i = List(name,email,pass).find(x => x match{
case None => true
case _ => false
})
i match{
case Some(x) => Ok("Bad Request")
case None => {
//move forward
}
}
Above I can replace find with contains, but this is a very dirty way. How can I make it elegant and monadic?
Edit: I would also like to know what element was None.
Another way is as a for-comprehension:
val outcome = for {
nm <- name
em <- email
pwd <- pass
result = doSomething(nm, em, pwd) // where def doSomething(name: String, email: String, password: String): ResultType = ???
} yield (result)
This will generate outcome as a Some(result), which you can interrogate in various ways (all the methods available to the collections classes: map, filter, foreach, etc.). Eg:
outcome.map(Ok(result)).orElse(Ok("Bad Request"))
val ok = Seq(name, email, pass).forall(_.isDefined)
If you want to reuse the code, you can do
def allFieldValueProvided(fields: Option[_]*): Boolean = fields.forall(_.isDefined)
If you want to know all the missing values then you can find all missing values and if there is none, then you are good to go.
def findMissingValues(v: (String, Option[_])*) = v.collect {
case (name, None) => name
}
val missingValues = findMissingValues(("name1", option1), ("name2", option2), ...)
if(missingValues.isEmpty) {
Ok(...)
} else {
BadRequest("Missing values for " + missingValues.mkString(", ")))
}
val response = for {
n <- name
e <- email
p <- pass
} yield {
/* do something with n, e, p */
}
response getOrElse { /* bad request /* }
Or, with Scalaz:
val response = (name |#| email |#| pass) { (n, e, p) =>
/* do something with n, e, p */
}
response getOrElse { /* bad request /* }
if ((name :: email :: pass :: Nil) forall(!_.isEmpty)) {
} else {
// bad request
}
I think the most straightforward way would be this:
(name,email,pass) match {
case ((Some(name), Some(email), Some(pass)) => // proceed
case _ => // Bad request
}
A version with stone knives and bear skins:
import util._
object Test extends App {
val zero: Either[List[Int], Tuple3[String,String,String]] = Right((null,null,null))
def verify(fields: List[Option[String]]) = {
(zero /: fields.zipWithIndex) { (acc, v) => v match {
case (Some(s), i) => acc match {
case Left(_) => acc
case Right(t) =>
val u = i match {
case 0 => t copy (_1 = s)
case 1 => t copy (_2 = s)
case 2 => t copy (_3 = s)
}
Right(u)
}
case (None, i) =>
val fails = acc match {
case Left(f) => f
case Right(_) => Nil
}
Left(i :: fails)
}
}
}
def consume(name: String, email: String, pass: String) = Console println s"$name/$email/$pass"
def fail(is: List[Int]) = is map List("name","email","pass") foreach (Console println "Missing: " + _)
val name:Option[String] = Some("Bob")
val email:Option[String]= None
val pass:Option[String] = Some("boB")
val res = verify(List(name,email,pass))
res.fold(fail, (consume _).tupled)
val res2 = verify(List(name, Some("bob#bob.org"),pass))
res2.fold(fail, (consume _).tupled)
}
The same thing, using reflection to generalize the tuple copy.
The downside is that you must tell it what tuple to expect back. In this form, reflection is like one of those Stone Age advances that were so magical they trended on twitter for ten thousand years.
def verify[A <: Product](fields: List[Option[String]]) = {
import scala.reflect.runtime._
import universe._
val MaxTupleArity = 22
def tuple = {
require (fields.length <= MaxTupleArity)
val n = fields.length
val tupleN = typeOf[Tuple2[_,_]].typeSymbol.owner.typeSignature member TypeName(s"Tuple$n")
val init = tupleN.typeSignature member nme.CONSTRUCTOR
val ctor = currentMirror reflectClass tupleN.asClass reflectConstructor init.asMethod
val vs = Seq.fill(n)(null.asInstanceOf[String])
ctor(vs: _*).asInstanceOf[Product]
}
def zero: Either[List[Int], Product] = Right(tuple)
def nextProduct(p: Product, i: Int, s: String) = {
val im = currentMirror reflect p
val ts = im.symbol.typeSignature
val copy = (ts member TermName("copy")).asMethod
val args = copy.paramss.flatten map { x =>
val name = TermName(s"_$i")
if (x.name == name) s
else (im reflectMethod (ts member x.name).asMethod)()
}
(im reflectMethod copy)(args: _*).asInstanceOf[Product]
}
(zero /: fields.zipWithIndex) { (acc, v) => v match {
case (Some(s), i) => acc match {
case Left(_) => acc
case Right(t) => Right(nextProduct(t, i + 1, s))
}
case (None, i) =>
val fails = acc match {
case Left(f) => f
case Right(_) => Nil
}
Left(i :: fails)
}
}.asInstanceOf[Either[List[Int], A]]
}
def consume(name: String, email: String, pass: String) = Console println s"$name/$email/$pass"
def fail(is: List[Int]) = is map List("name","email","pass") foreach (Console println "Missing: " + _)
val name:Option[String] = Some("Bob")
val email:Option[String]= None
val pass:Option[String] = Some("boB")
type T3 = Tuple3[String,String,String]
val res = verify[T3](List(name,email,pass))
res.fold(fail, (consume _).tupled)
val res2 = verify[T3](List(name, Some("bob#bob.org"),pass))
res2.fold(fail, (consume _).tupled)
I know this doesn't scale well, but would this suffice?
(name, email, pass) match {
case (None, _, _) => "name"
case (_, None, _) => "email"
case (_, _, None) => "pass"
case _ => "Nothing to see here"
}