Incorrect result in sequence of futures/either - scala

Given the code below that combines sequence of futures and Either, I always get printed "not OK", why is that if the result is a List?
def future1 (i: Int) = Future { if (i==0) Right(1) else Left("error 1") }
def future2 (i: Int) = Future { if (i==0) Right(2) else Left("error 2") }
...
...
val f1 = future1(0)
val f2 = future2(0)
val f3 = Future.sequence(Seq(f1, f2))
f3.map { result =>
result match {
case List(r) => println("ok")
case _ => println("not OK)
}
}

case List(r) would only match a list with one element which would be then bound to r.
To check if the result is an instance of type List use
f3.map { result =>
result match {
case r: List[_] => println("ok")
case _ => println("not OK)
}
}

Related

How to create an Akka Stream Source that generates items recursively

I'm trying to figure out how to create an Akka Streams source that generates many Seq[Int].
Basically, given an int n I want to generate all of the Seq[Int] of 1 to n
Here's some code that does this:
def combinations(n: Int): Seq[Seq[Int]] = {
def loop(acc: (Seq[Int], Seq[Seq[Int]]),
remaining: Seq[Int]): Seq[Seq[Int]] = {
remaining match {
case s if s.size == 1 => {
val total: Seq[Seq[Int]] = acc._2
val current: Seq[Int] = acc._1
total :+ (current :+ s.head)
}
case _ => {
for {
x <- remaining
comb <- loop((acc._1 :+ x, acc._2), remaining.filter(_ != x))
} yield comb
}
}
}
loop((Seq(), Seq()), (1 to n))
}
This works fine up to 10... then it blows up because it runs out of memory. Since I just want to process each of them and don't need to keep them all in memory, I thought... Akka Streams. But I'm at a loss for how to turn this into a Source that produces each combination so I can process them. Basically there where it's appending to total I would produce another item onto the stream.
Here is a solution that uses the Johnson-Trotter algorithm for permutations. tcopermutations creates a LazyList that can be evaluated as needed. For more permutations, just pass a different value to printNIterations.
The reason for using the Johnson-Trotter algorithm is that it breaks the recursive structure of the permutation finding algorithm. That's important for being able to evaluate successive instances of the permutation and storing them in some kind of lazy list or stream.
object PermutationsTest {
def main(args: Array[String]) = {
printNIterations(50, tcopermutations(5).iterator)
}
def printNIterations(n: Int, it: Iterator[Seq[Int]]): Unit = {
if (n<=0) ()
else {
if (it.hasNext) {
println(it.next())
printNIterations(n - 1, it)
} else ()
}
}
def naivepermutations(n: Int): Seq[Seq[Int]] = {
def loop(acc: Seq[Int], remaining: Seq[Int]): Seq[Seq[Int]] = {
remaining match {
case s if s.size == 1 => {
val current: Seq[Int] = acc
Seq((current :+ s.head))
}
case _ => {
for {
x <- remaining
comb <- loop(acc :+ x, remaining.filter(_ != x))
} yield comb
}
}
}
loop(Seq(), (1 to n))
}
def tcopermutations(n: Int): LazyList[Seq[Int]] = {
val start = (1 to n).map(Element(_, Left))
def loop(v: Seq[Element]): LazyList[Seq[Element]] = {
johnsonTrotter(v) match {
case Some(s) => v #:: loop(s)
case None => LazyList(v)
}
}
loop(start).map(_.map(_.i))
}
def checkIfMobile(seq: Seq[Element], i: Int): Boolean = {
val e = seq(i)
def getAdjacent(s: Seq[Element], d: Direction, j: Int): Int = {
val adjacentIndex = d match {
case Left => j - 1
case Right => j + 1
}
s(adjacentIndex).i
}
if (e.direction == Left && i == 0) false
else if (e.direction == Right && i == seq.size - 1) false
else if (getAdjacent(seq, e.direction, i) < e.i) true
else false
}
def findLargestMobile(seq: Seq[Element]): Option[Int] = {
val mobiles = (0 until seq.size).filter{j => checkIfMobile(seq, j)}
if (mobiles.isEmpty) None
else {
val folded = mobiles.map(x=>(x,seq(x).i)).foldLeft(None: Option[(Int, Int)]){ case (acc, elem) =>
acc match {
case None => Some(elem)
case Some((i, value)) => if (value > elem._2) Some((i, value)) else Some(elem)
}
}
folded.map(_._1)
}
}
def swapLargestMobile(seq: Seq[Element], index: Int): (Seq[Element], Int) = {
val dir = seq(index).direction
val value = seq(index).i
dir match {
case Right =>
val folded = seq.foldLeft((None, Seq()): (Option[Element], Seq[Element])){(acc, elem) =>
val matched = elem.i == value
val newAccOpt = if (matched) Some(elem) else None
val newAccSeq = acc._1 match {
case Some(swapMe) => acc._2 :+ elem :+ swapMe
case None => if (matched) acc._2 else acc._2 :+ elem
}
(newAccOpt, newAccSeq)
}
(folded._2, index + 1)
case Left =>
val folded = seq.foldRight((None, Seq()): (Option[Element], Seq[Element])){(elem, acc) =>
val matched = elem.i == value
val newAccOpt = if (matched) Some(elem) else None
val newAccSeq = acc._1 match {
case Some(swapMe) => swapMe +: elem +: acc._2
case None => if (matched) acc._2 else elem +: acc._2
}
(newAccOpt, newAccSeq)
}
(folded._2, index - 1)
}
}
def revDirLargerThanMobile(seq: Seq[Element], mobile: Int) = {
def reverse(e: Element) = {
e.direction match {
case Left => Element(e.i, Right)
case Right => Element(e.i, Left)
}
}
seq.map{ elem =>
if (elem.i > seq(mobile).i) reverse(elem)
else elem
}
}
def johnsonTrotter(curr: Seq[Element]): Option[Seq[Element]] = {
findLargestMobile(curr).map { m =>
val (swapped, newMobile) = swapLargestMobile(curr, m)
revDirLargerThanMobile(swapped, newMobile)
}
}
trait Direction
case object Left extends Direction
case object Right extends Direction
case class Element(i: Int, direction: Direction)
}

How let State works with Kleisli?

I'm having an example for a logger wrapped with State monad:
val logger = Logger(LoggerFactory.getLogger(this.getClass))
def logState[A](s:IO[Unit], a:A): State[List[IO[Unit]], A] = State[List[IO[Unit]], A]{ logs =>
(logs :+ s, a)
}
type Valid[A] = Exception \/ A
def i2f(i:Int): Valid[BigDecimal] = if (i >= 0) BigDecimal(i).right else (new RuntimeException("Input is smaller then 0")).left
def f2s(f: Valid[BigDecimal]): Valid[String] = f match {
case \/-(f1) => f1.toString.right
case -\/(e) => e.left
}
val comp: Int => State[List[IO[Unit]], Valid[String]] = i => for{
f <- logState(IO{ logger.info(s" => i2f($i)")}, i2f(i))
s <- logState(IO{ logger.info(s" => f2s($f)")}, f2s(f))
} yield s
comp(2)(List.empty) match {
case (logs, a) => {
logs.foreach(_.unsafePerformIO())
a match {
case \/-(s) => println(s"Finally we get: ${s}")
case -\/(e) => println(e.getMessage)
}
}
}
Which works well, but I'm not satisfy with as before I adding State monad, the code was much more clear which was:
type Valid[A] = Exception \/ A
def i2f: Kleisli[Valid, Int, BigDecimal] = Kleisli { i =>
if (i >= 0) BigDecimal(i).right else (new RuntimeException("Input is smaller then 0")).left
}
def f2s: Kleisli[Valid, BigDecimal, String] = Kleisli { f =>
f.toString().right
}
def comp: Kleisli[Valid, Int, String] = i2f andThen f2s
comp(2) match {
case \/-(s) => println(s"Finally we get: ${s}")
case -\/(e) => println(e.getMessage)
}
I'm wondering how let State to work with Kleisli? so that all monads will be working together likes one?
And not the logger will works out of i2f and f2s functions, but also are able to work inside?
All right, got some progress, now the code been:
implicit val ec = scala.concurrent.ExecutionContext.global
type Valid[A] = Exception \/ A
type Report = List[IO[Unit]]
type StateResultT[A] = StateT[Future, Report, A]
implicit val StateResultBind: Bind[StateResultT] = new Bind[StateResultT] {
override def bind[A, B](fa: StateResultT[A])(f: A => StateResultT[B]): StateResultT[B] = fa flatMap f
override def map[A, B](fa: StateResultT[A])(f: A => B): StateResultT[B] = fa map f
}
def i2f: Kleisli[StateResultT, Int, Valid[BigDecimal]] = Kleisli{ i =>
StateT { logs =>
Future (
logs :+ IO(logger.debug("i2f")),
if (i >= 0) BigDecimal(i).right else (new RuntimeException("Input is smaller then 0")).left
)
}
}
def f2s: Kleisli[StateResultT, Valid[BigDecimal], (Report, Valid[String])] = Kleisli { s =>
StateT { logs =>
Future (
logs :+ IO(logger.debug("f2s")),
s match{
case \/-(f) => f.toString.right
case -\/(e) => e.left
}
)
}
}
def comp: Kleisli[StateResultT, Int, Valid[String]] = i2f andThen f2s
Await.result(comp(-2)(List.empty), Duration.Inf) match {
case (logs, a) => {
logs.foreach(_.unsafePerformIO())
a match {
case \/-(s) => println(s"Finally we get: ${s}")
case -\/(e) => println(e.getMessage)
}
}
}

Recursively returning a concatenation of Future.Right

In the recursive recHelper method below I need to return a list of Futures if all the elements returned Right else a Future Left. Problem is that I cannot concatenate the results. How to make this code work?
def either1 (i:Int): Future[Either[String,Int]] = Future {
if (i<3)
Right(i*2)
else
Left("error 1")
}
def either2 (i:Int): Future[Either[String,Int]] = Future {
if (i<3)
Right(i*2)
else
Left("error 2")
}
val seq = Seq (1,1,2,2)
def recHelper(remaining: List[Int]): Future[Either[String, Seq[Int]]] = {
remaining match {
case Nil => Nil
case h :: t => (if (h % 2 == 0) either1(h) else either2(h)).map {
headEither =>
headEither match {
case Left(s) => Future { Left(s) }
case Right(n) => Future { n :: recHelper(t) :: Nil } /// ERROR
}
}
}
}
recHelper(seq.toList)
The Nil => Nil case indicates that you should read up again what the Future and what the Either monads do: Nil is inferred to be of type List[Int]. It's missing two applications of a monadic unit, namely:
You forgot to wrap it into a Right to make it Either[List[Int]]
You forgot to wrap it into a Future, to make it Future[Either[List[Int]]
Same applies for the other cases. Here is a version that works:
import scala.concurrent._
import scala.util._
import scala.concurrent.ExecutionContext.Implicits.global
def either1(i: Int): Future[Either[String, Int]] = Future {
if (i<3) Right(i*2)
else Left("error 1")
}
def either2(i: Int): Future[Either[String, Int]] = Future {
if (i<3) Right(i*2)
else Left("error 2")
}
val seq = Seq(1, 1, 2, 2)
def recHelper(remaining: List[Int]): Future[Either[String, List[Int]]] = {
remaining match {
case Nil => Future { Right(Nil) }
case h :: t => for {
hEith <- (if (h % 2 == 0) either1(h) else either2(h))
res <- (hEith match {
case Left(s) => Future { Left(s) }
case Right(n) => for {
tEith <- recHelper(t)
} yield tEith.map(n :: _)
})
} yield res
}
}
recHelper(seq.toList)
You can't build a complex nested for-comprehension with two stacked monads by accident. I can only again strongly recommend to take a look at Scala Cats and EitherT. They've build the monad transformer libraries not (only) for fun: it's actually quite painful to deal with two stacked monads simultaneously.
An alternate solution:
def recHelper(remaining :Seq[Int]
,acc :Seq[Int] = Seq()
) :Future[Either[String, Seq[Int]]] = remaining match {
case Seq() => Future(Right(acc))
case h +: t => (if (h % 2 == 0) either1(h) else either2(h)).flatMap {
case Left(s) => Future(Left(s))
case Right(n) => recHelper(t, n +: acc)
}
}
recHelper(seq)
//res0: Future[Either[String,Seq[Int]]] = Future(Right(List(4, 4, 2, 2)))

scala's Try elegant on error behavior

Is there a more elegant way of doing this in scala?
def doTheDangerousThing(): Try[Result] = {
val result = Try(dangerousOp)
if (result.isFailure) {
println("error")
}
result
}
I think your if statement is perfectly valid. Here is another alternative:
def doTheDangerousThing(): Try[Result] = Try(dangerousOp) recoverWith {
case exception => println("error"); Failure(exception)
}
Something like this:
def doTheDangerousThing[Result](dangerousOp: =>Result): Try[Result] = Try(dangerousOp) match {
case o # Failure(_) => println("error"); o
case _ => _
}
Not sure if this is more idiomatic, but sometimes I find that placing the recoverWith in this manner improves readability for me:
def doDangerousThing(): Try[Result] = Try {
dangerousOp
} recoverWith {
case t: Throwable => println("error"); Failure(t)
}
My preferred,
def doTheDangerousThing(): Option[Result] = Try (dangerousOp) toOption
If the Try is successful you will get a Some(value), if it fails a None.
For a large compilation on Try uses, have a look at Try introduced in Scala 2.10.0 .
There are ways. For instance:
def doTheDangerousThing(): Try[Result] = {
val result = Try(dangerousOp)
result.failed foreach { _ =>
println("error")
}
result
}
Or, if you don't want to repeat result all through, then:
def doTheDangerousThing(): Try[Result] = {
Try(dangerousOp) recover {
case ex => println("error"); throw ex
}
}
Well, I suppose you could do something like this:
def doTheDangerousThing(): Option[Result] =
Try(dangerousOp) match {
case Success(result) => Some(result)
case Failure(e) => None //might want to log the error as well
}
In some cases I love to use two-step approach which will allow me a more granular error message control:
def retrieveData(dataId: String): Try[String] = {
Try {
Option(someApi(dataId))
.getOrElse(throw SomeApiFailedException("invalid dataId"))
} recoverWith {
case e: SomeApiFailedException => Failure(e)
case e: Throwable => Failure(SomeApiFailedException("failed retrieve dataId"))
}
}
case class SomeApiFailedException(err: String) extends RuntimeException(err)
I could choose from either of the three implementations, depending on whether I want to:
Simply propagate it upwards ( doTheDangerousThing1 )
Ignore the error ( doTheDangerousThing2 )
Intercept the error while propagating it upwards ( doTheDangerousThing3 )
Here is the code:
import scala.util.{Try,Success,Failure}
object temp {
type Result = Int
def dangerousOp = {
val r = scala.util.Random.nextInt(10)
if (r > 5) r else throw new RuntimeException("Failed on " + r)
}
def logMessage[T](t: T) = println(t)
def doTheDangerousThing1(): Try[Result] = Try(dangerousOp)
def doTheDangerousThing2(): Option[Result] = {
Try(dangerousOp) match {
case Success(r) => Option(r)
case _ => None
}
}
def doTheDangerousThing3(): Try[Result] = {
Try(dangerousOp) match {
case t # Success(r) => t
case t # _ => logMessage("failed: "+t); t
}
}
}
Inside the REPL
scala> doTheDangerousThing1
res0: scala.util.Try[Result] = Success(9)
scala> doTheDangerousThing1
res1: scala.util.Try[Result] = Success(9)
scala> doTheDangerousThing2
res2: Option[Result] = None
scala> doTheDangerousThing2
res3: Option[Result] = Some(7)
scala> doTheDangerousThing3
failed: Failure(java.lang.RuntimeException: Failed on 0)
res4: scala.util.Try[Result] = Failure(java.lang.RuntimeException: Failed on 0)
scala> doTheDangerousThing3
failed: Failure(java.lang.RuntimeException: Failed on 0)
res5: scala.util.Try[Result] = Failure(java.lang.RuntimeException: Failed on 0)

How to check if there's None in List[Option[_]] and return the element's name?

I have multiple Option's. I want to check if they hold a value. If an Option is None, I want to reply to user about this. Else proceed.
This is what I have done:
val name:Option[String]
val email:Option[String]
val pass:Option[String]
val i = List(name,email,pass).find(x => x match{
case None => true
case _ => false
})
i match{
case Some(x) => Ok("Bad Request")
case None => {
//move forward
}
}
Above I can replace find with contains, but this is a very dirty way. How can I make it elegant and monadic?
Edit: I would also like to know what element was None.
Another way is as a for-comprehension:
val outcome = for {
nm <- name
em <- email
pwd <- pass
result = doSomething(nm, em, pwd) // where def doSomething(name: String, email: String, password: String): ResultType = ???
} yield (result)
This will generate outcome as a Some(result), which you can interrogate in various ways (all the methods available to the collections classes: map, filter, foreach, etc.). Eg:
outcome.map(Ok(result)).orElse(Ok("Bad Request"))
val ok = Seq(name, email, pass).forall(_.isDefined)
If you want to reuse the code, you can do
def allFieldValueProvided(fields: Option[_]*): Boolean = fields.forall(_.isDefined)
If you want to know all the missing values then you can find all missing values and if there is none, then you are good to go.
def findMissingValues(v: (String, Option[_])*) = v.collect {
case (name, None) => name
}
val missingValues = findMissingValues(("name1", option1), ("name2", option2), ...)
if(missingValues.isEmpty) {
Ok(...)
} else {
BadRequest("Missing values for " + missingValues.mkString(", ")))
}
val response = for {
n <- name
e <- email
p <- pass
} yield {
/* do something with n, e, p */
}
response getOrElse { /* bad request /* }
Or, with Scalaz:
val response = (name |#| email |#| pass) { (n, e, p) =>
/* do something with n, e, p */
}
response getOrElse { /* bad request /* }
if ((name :: email :: pass :: Nil) forall(!_.isEmpty)) {
} else {
// bad request
}
I think the most straightforward way would be this:
(name,email,pass) match {
case ((Some(name), Some(email), Some(pass)) => // proceed
case _ => // Bad request
}
A version with stone knives and bear skins:
import util._
object Test extends App {
val zero: Either[List[Int], Tuple3[String,String,String]] = Right((null,null,null))
def verify(fields: List[Option[String]]) = {
(zero /: fields.zipWithIndex) { (acc, v) => v match {
case (Some(s), i) => acc match {
case Left(_) => acc
case Right(t) =>
val u = i match {
case 0 => t copy (_1 = s)
case 1 => t copy (_2 = s)
case 2 => t copy (_3 = s)
}
Right(u)
}
case (None, i) =>
val fails = acc match {
case Left(f) => f
case Right(_) => Nil
}
Left(i :: fails)
}
}
}
def consume(name: String, email: String, pass: String) = Console println s"$name/$email/$pass"
def fail(is: List[Int]) = is map List("name","email","pass") foreach (Console println "Missing: " + _)
val name:Option[String] = Some("Bob")
val email:Option[String]= None
val pass:Option[String] = Some("boB")
val res = verify(List(name,email,pass))
res.fold(fail, (consume _).tupled)
val res2 = verify(List(name, Some("bob#bob.org"),pass))
res2.fold(fail, (consume _).tupled)
}
The same thing, using reflection to generalize the tuple copy.
The downside is that you must tell it what tuple to expect back. In this form, reflection is like one of those Stone Age advances that were so magical they trended on twitter for ten thousand years.
def verify[A <: Product](fields: List[Option[String]]) = {
import scala.reflect.runtime._
import universe._
val MaxTupleArity = 22
def tuple = {
require (fields.length <= MaxTupleArity)
val n = fields.length
val tupleN = typeOf[Tuple2[_,_]].typeSymbol.owner.typeSignature member TypeName(s"Tuple$n")
val init = tupleN.typeSignature member nme.CONSTRUCTOR
val ctor = currentMirror reflectClass tupleN.asClass reflectConstructor init.asMethod
val vs = Seq.fill(n)(null.asInstanceOf[String])
ctor(vs: _*).asInstanceOf[Product]
}
def zero: Either[List[Int], Product] = Right(tuple)
def nextProduct(p: Product, i: Int, s: String) = {
val im = currentMirror reflect p
val ts = im.symbol.typeSignature
val copy = (ts member TermName("copy")).asMethod
val args = copy.paramss.flatten map { x =>
val name = TermName(s"_$i")
if (x.name == name) s
else (im reflectMethod (ts member x.name).asMethod)()
}
(im reflectMethod copy)(args: _*).asInstanceOf[Product]
}
(zero /: fields.zipWithIndex) { (acc, v) => v match {
case (Some(s), i) => acc match {
case Left(_) => acc
case Right(t) => Right(nextProduct(t, i + 1, s))
}
case (None, i) =>
val fails = acc match {
case Left(f) => f
case Right(_) => Nil
}
Left(i :: fails)
}
}.asInstanceOf[Either[List[Int], A]]
}
def consume(name: String, email: String, pass: String) = Console println s"$name/$email/$pass"
def fail(is: List[Int]) = is map List("name","email","pass") foreach (Console println "Missing: " + _)
val name:Option[String] = Some("Bob")
val email:Option[String]= None
val pass:Option[String] = Some("boB")
type T3 = Tuple3[String,String,String]
val res = verify[T3](List(name,email,pass))
res.fold(fail, (consume _).tupled)
val res2 = verify[T3](List(name, Some("bob#bob.org"),pass))
res2.fold(fail, (consume _).tupled)
I know this doesn't scale well, but would this suffice?
(name, email, pass) match {
case (None, _, _) => "name"
case (_, None, _) => "email"
case (_, _, None) => "pass"
case _ => "Nothing to see here"
}