scala - Cannot create SparkContext and SparkSession [duplicate] - scala

This question already has answers here:
Resolving dependency problems in Apache Spark
(7 answers)
Closed 4 years ago.
I am new to scala and Spark. I am trying to read in a csv file therefore I create a SparkSession to read the csv. Also I create a SparkContext to work later with rdd. I am using scala-ide.
The appearing error is maybe a common error in java, but I am not able to solve them.
code:
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
import org.apache.spark.mllib.stat.Statistics
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql._
object Solution1 {
def main(args: Array[String]){
println("Create contex for rdd ")
val conf = new SparkConf().setAppName("Problem1")
val cont = new SparkContext(conf)
println("create SparkSession and read csv")
val spark = SparkSession.builder().appName("Problem1").getOrCreate()
val data = spark.read.option("header", false).csv("file.csv")
// further processing
cont.stop()
}
}
The error:
Create contex for rdd
Exception in thread "main" java.lang.NoClassDefFoundError: org/spark_project/guava/cache/CacheLoader
at org.apache.spark.SparkConf.loadFromSystemProperties(SparkConf.scala:73)
at org.apache.spark.SparkConf.<init>(SparkConf.scala:68)
at org.apache.spark.SparkConf.<init>(SparkConf.scala:55)
at Solution1$.main(Solution1.scala:13)
at Solution1.main(Solution1.scala)
Caused by: java.lang.ClassNotFoundException: org.spark_project.guava.cache.CacheLoader
at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:331)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
... 5 more

Please create Spark Context like below
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("someName").setMaster("local[*]")
val sparkContext = new SparkContext(conf)
}
To read data
val rdd = sparkContext.textFile("path.csv")
and Spark Session like below
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder()
.appName("Creating spark session")
.master("local[*]")
.getOrCreate()
}
To read data call
val df = spark.read.format("json").load("path.json")
Also if you have spark session create then you do not need to create Spark context separately, you can call Spark session like this way to take advantage of Spark context as well:
val data = spark.sparkContext.textFile("path")

Related

Converting error with RDD operation in Scala

I am new to Scala and I ran into the error while doing some practice.
I tried to convert RDD into DataFrame and following is my code.
package com.sclee.examples
import com.sun.org.apache.xalan.internal.xsltc.compiler.util.IntType
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.{LongType, StringType, StructField, StructType};
object App {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("examples").setMaster("local")
val sc = new SparkContext(conf)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
case class Person(name: String, age: Long)
val personRDD = sc.makeRDD(Seq(Person("A",10),Person("B",20)))
val df = personRDD.map({
case Row(val1: String, val2: Long) => Person(val1,val2)
}).toDS()
// val ds = personRDD.toDS()
}
}
I followed the instructions in Spark documentation and also referenced some blogs showing me how to convert rdd into dataframe but the I got the error below.
Error:(20, 27) Unable to find encoder for type stored in a Dataset. Primitive types (Int, String, etc) and Product types (case classes) are supported by importing sqlContext.implicits._ Support for serializing other types will be added in future releases.
val df = personRDD.map({
Although I tried to fix the problem by myself but failed. Any help will be appreciated.
The following code works:
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession
case class Person(name: String, age: Long)
object SparkTest {
def main(args: Array[String]): Unit = {
// use the SparkSession of Spark 2
val spark = SparkSession
.builder()
.appName("Spark SQL basic example")
.config("spark.some.config.option", "some-value")
.getOrCreate()
import spark.implicits._
// this your RDD - just a sample how to create an RDD
val personRDD: RDD[Person] = spark.sparkContext.parallelize(Seq(Person("A",10),Person("B",20)))
// the sparksession has a method to convert to an Dataset
val ds = spark.createDataset(personRDD)
println(ds.count())
}
}
I made the following changes:
use SparkSession instead of SparkContext and SqlContext
move Person class out of the App (I'm not sure why I had to do
this)
use createDataset for conversion
However, I guess it's pretty uncommon to do this conversion and you probably want to read your input directly into an Dataset using the read method

Spark NaiveBayesTextClassification

i'm trying to create a text classifier spark(1.6.2) app, but I don't know what am I doing wrong. This is my code:
import org.apache.spark.ml.classification.{NaiveBayes, NaiveBayesModel}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.mllib
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}
/**
* Created by kebodev on 2016.11.29..
*/
object PredTest {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
.setMaster("local[*]")
.setAppName("IktatoSparkRunner")
.set("spark.executor.memory", "2gb")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val trainData = sqlContext.read.json("src/main/resources/tst.json")
val tokenizer = new Tokenizer().setInputCol("text").setOutputCol("words")
val wordsData = tokenizer.transform(trainData)
val hashingTF = new HashingTF()
.setInputCol("words").setOutputCol("features").setNumFeatures(20)
val featurizedData = hashingTF.transform(wordsData)
val model = NaiveBayes.train(featurizedData)
}
}
The NaiveBayes object doesn't have train method, what should I import?
If i try to use this way:
val naBa = new NaiveBayes()
naBa.fit(featurizedData)
I get this exception:
Exception in thread "main" java.lang.IllegalArgumentException: requirement failed: Column label must be of type DoubleType but was actually StringType.
at scala.Predef$.require(Predef.scala:224)
at org.apache.spark.ml.util.SchemaUtils$.checkColumnType(SchemaUtils.scala:42)
at org.apache.spark.ml.PredictorParams$class.validateAndTransformSchema(Predictor.scala:53)
at org.apache.spark.ml.classification.Classifier.org$apache$spark$ml$classification$ClassifierParams$$super$validateAndTransformSchema(Classifier.scala:56)
at org.apache.spark.ml.classification.ClassifierParams$class.validateAndTransformSchema(Classifier.scala:40)
at org.apache.spark.ml.classification.ProbabilisticClassifier.org$apache$spark$ml$classification$ProbabilisticClassifierParams$$super$validateAndTransformSchema(ProbabilisticClassifier.scala:53)
at org.apache.spark.ml.classification.ProbabilisticClassifierParams$class.validateAndTransformSchema(ProbabilisticClassifier.scala:37)
at org.apache.spark.ml.classification.ProbabilisticClassifier.validateAndTransformSchema(ProbabilisticClassifier.scala:53)
at org.apache.spark.ml.Predictor.transformSchema(Predictor.scala:116)
at org.apache.spark.ml.PipelineStage.transformSchema(Pipeline.scala:68)
at org.apache.spark.ml.Predictor.fit(Predictor.scala:89)
at PredTest$.main(PredTest.scala:37)
at PredTest.main(PredTest.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:147)
This is how my json file looks like:
{"text":"any text","label":"6.0"}
I'm really noob in this topic. Can anyone help me how to create a model, and then how to predict a new value.
Thank you!
Labels and Feature Vectors only contain Doubles. Your label column contains a String.
See your stacktrace:
Column label must be of type DoubleType but was actually StringType.
You can use the StringIndexer or CountVectorizer to convert it appropriately. See http://spark.apache.org/docs/latest/ml-features.html#stringindexer for further details.

structured streaming with Spark 2.0.2, Kafka source and scalapb

I am using structured streaming (Spark 2.0.2) to consume kafka messages. Using scalapb, messages in protobuf. I am getting the following error. Please help..
Exception in thread "main" scala.ScalaReflectionException: is
not a term at
scala.reflect.api.Symbols$SymbolApi$class.asTerm(Symbols.scala:199)
at
scala.reflect.internal.Symbols$SymbolContextApiImpl.asTerm(Symbols.scala:84)
at
org.apache.spark.sql.catalyst.ScalaReflection$class.constructParams(ScalaReflection.scala:811)
at
org.apache.spark.sql.catalyst.ScalaReflection$.constructParams(ScalaReflection.scala:39)
at
org.apache.spark.sql.catalyst.ScalaReflection$class.getConstructorParameters(ScalaReflection.scala:800)
at
org.apache.spark.sql.catalyst.ScalaReflection$.getConstructorParameters(ScalaReflection.scala:39)
at
org.apache.spark.sql.catalyst.ScalaReflection$.org$apache$spark$sql$catalyst$ScalaReflection$$serializerFor(ScalaReflection.scala:582)
at
org.apache.spark.sql.catalyst.ScalaReflection$.org$apache$spark$sql$catalyst$ScalaReflection$$serializerFor(ScalaReflection.scala:460)
at
org.apache.spark.sql.catalyst.ScalaReflection$$anonfun$9.apply(ScalaReflection.scala:592)
at
org.apache.spark.sql.catalyst.ScalaReflection$$anonfun$9.apply(ScalaReflection.scala:583)
at
scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:252)
at
scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:252)
at scala.collection.immutable.List.foreach(List.scala:381) at
scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:252)
at scala.collection.immutable.List.flatMap(List.scala:344) at
org.apache.spark.sql.catalyst.ScalaReflection$.org$apache$spark$sql$catalyst$ScalaReflection$$serializerFor(ScalaReflection.scala:583)
at
org.apache.spark.sql.catalyst.ScalaReflection$.serializerFor(ScalaReflection.scala:425)
at
org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$.apply(ExpressionEncoder.scala:61)
at org.apache.spark.sql.Encoders$.product(Encoders.scala:274) at
org.apache.spark.sql.SQLImplicits.newProductEncoder(SQLImplicits.scala:47)
at PersonConsumer$.main(PersonConsumer.scala:33) at
PersonConsumer.main(PersonConsumer.scala) at
sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498) at
com.intellij.rt.execution.application.AppMain.main(AppMain.java:147)
The following is my code ...
object PersonConsumer {
import org.apache.spark.rdd.RDD
import com.trueaccord.scalapb.spark._
import org.apache.spark.sql.{SQLContext, SparkSession}
import com.example.protos.demo._
def main(args : Array[String]) {
def parseLine(s: String): Person =
Person.parseFrom(
org.apache.commons.codec.binary.Base64.decodeBase64(s))
val spark = SparkSession.builder.
master("local")
.appName("spark session example")
.getOrCreate()
import spark.implicits._
val ds1 = spark.readStream.format("kafka").option("kafka.bootstrap.servers","localhost:9092").option("subscribe","person").load()
val ds2 = ds1.selectExpr("CAST(value AS STRING)").as[String]
val ds3 = ds2.map(str => parseLine(str)).createOrReplaceTempView("persons")
val ds4 = spark.sqlContext.sql("select name from persons")
val query = ds4.writeStream
.outputMode("append")
.format("console")
.start()
query.awaitTermination()
}
}
The line with val ds3 should be:
val ds3 = ds2.map(str => parseLine(str))
sqlContext.protoToDataFrame(ds3).registerTempTable("persons")
The RDD needs to be converted to a data frame before it is saved as temp table.
In Person class, gender is a enum and this was the cause for this problem. After removing this field, it works fine.
The following is the answer I got from Shixiong(Ryan) of DataBricks.
The problem is "optional Gender gender = 3;". The generated class "Gender" is a trait, and Spark cannot know how to create a trait so it's not supported. You can define your class which is supported by SQL Encoder, and convert this generated class to the new class in parseLine.

Importing Spark libraries using Intellij IDEA

I would like to use spark SQL in an Intellij IDEA SBT project.
Even though I have imported the library the code does not seem to import it.
Spark Core seems to be working however.
You can't create a DataFrame from a scala List[A]. You need first to create an RDD[A], and then transform that to a DataFrame. You also need an SQLContext:
val conf = new SparkConf()
.setMaster("local[*]")
.setAppName("test")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
val test = sc.parallelize(List(1,2,3,4)).toDF
For reference this is how the Spark 2.0 boilerplate with spark sql should look like:
import org.apache.spark.sql.SparkSession
object Test {
def main(args: Array[String]) {
val spark = SparkSession.builder()
.master("local")
.appName("some name")
.getOrCreate()
import spark.sqlContext.implicits._
}
}

Spark kryo encoder ArrayIndexOutOfBoundsException

I'm trying to create a dataset with some geo data using spark and esri. If Foo only have Point field, it'll work but if I add some other fields beyond a Point, I get ArrayIndexOutOfBoundsException.
import com.esri.core.geometry.Point
import org.apache.spark.sql.{Encoder, Encoders, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
object Main {
case class Foo(position: Point, name: String)
object MyEncoders {
implicit def PointEncoder: Encoder[Point] = Encoders.kryo[Point]
implicit def FooEncoder: Encoder[Foo] = Encoders.kryo[Foo]
}
def main(args: Array[String]): Unit = {
val sc = new SparkContext(new SparkConf().setAppName("app").setMaster("local"))
val sqlContext = new SQLContext(sc)
import MyEncoders.{FooEncoder, PointEncoder}
import sqlContext.implicits._
Seq(new Foo(new Point(0, 0), "bar")).toDS.show
}
}
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 1
at
org.apache.spark.sql.execution.Queryable$$anonfun$formatString$1$$anonfun$apply$2.apply(Queryable.scala:71)
at
org.apache.spark.sql.execution.Queryable$$anonfun$formatString$1$$anonfun$apply$2.apply(Queryable.scala:70)
at
scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:772)
at
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at
scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:771)
at
org.apache.spark.sql.execution.Queryable$$anonfun$formatString$1.apply(Queryable.scala:70)
at
org.apache.spark.sql.execution.Queryable$$anonfun$formatString$1.apply(Queryable.scala:69)
at scala.collection.mutable.ArraySeq.foreach(ArraySeq.scala:73) at
org.apache.spark.sql.execution.Queryable$class.formatString(Queryable.scala:69)
at org.apache.spark.sql.Dataset.formatString(Dataset.scala:65) at
org.apache.spark.sql.Dataset.showString(Dataset.scala:263) at
org.apache.spark.sql.Dataset.show(Dataset.scala:230) at
org.apache.spark.sql.Dataset.show(Dataset.scala:193) at
org.apache.spark.sql.Dataset.show(Dataset.scala:201) at
Main$.main(Main.scala:24) at Main.main(Main.scala)
Kryo create encoder for complex data types based on Spark SQL Data Types. So check the result of schema that kryo create:
val enc: Encoder[Foo] = Encoders.kryo[Foo]
println(enc.schema) // StructType(StructField(value,BinaryType,true))
val numCols = schema.fieldNames.length // 1
So you have one column data in Dataset and it's in Binary format. But It's strange that why Spark attempting to show Dataset in more than one column (and that error occurs). To fix this, upgrade Spark version to 2.0.0.
By using Spark 2.0.0, you still have problem with columns data types. I hope writing manual schema works if you can write StructType for esri Point class:
val schema = StructType(
Seq(
StructField("point", StructType(...), true),
StructField("name", StringType, true)
)
)
val rdd = sc.parallelize(Seq(Row(new Point(0,0), "bar")))
sqlContext.createDataFrame(rdd, schema).toDS