Adding pagination to a (dotnet EntityFramework Core) table of db entities, I'd like to show a message like 'Showing items X to Y of Z' where Z is the total number of items in the table being paged.
Currently I fetch that total number of entries from a DbSet in a DbContext as dbContext.Things.Count().
On the plus side, this works (modulo possible ongoing parallel updates to the table of Things, but that's close enough for me).
On the down side, I'm concerned that it might not be particularly efficient, even that it might try to load items into memory. Clearly, with pagination I will need to load only a handful of items to display the current page.
My database is postgresql 9.5, accessed via Npsql.
So my question is: does anyone know of any pitfalls with this approach?
It turns out that for Postgres, Count could be an O(n) operation after all... https://wiki.postgresql.org/wiki/Count_estimate
There are tricks to try here which involve executing SQL at a penalty of producing estimates and/or slowing writes.
This table of mine is written far more often than it is read, so a naïve Count will do for the time being.
Related
I've been looking into pagination (paginate by timestamp) with a PSQL dbms. My approach currently is to build a b+ index to greatly reduce the cost of finding the start of the next chunk. But everywhere I look in tutorials and on NPM modules like express-paginate (https://www.npmjs.com/package/express-paginate), people seem to get chunks using offset one way or the other or fetching all the data anyways but simply sending them in chunks which to me doesn't seem to be a complete optimization that pagination is for.
I can see that they're still making an optimization by lazy loading and streaming the chunks (thus saving bandwidth and any download/processing time on the client-side), but since offset on psql still requires scanning previous rows. In the worst case where a user wants to view all the data, doesn't this approach have a very high server cost since if you have per say n chunks, you're accessing the first chunk n times, the second chunk n-1 times, the third chunk n-2 times, etc. I understand that this is really in terms of IOs so it's not that expensive but it still bothers me?
Am I missing something very obvious here? I feel like I am because there seems to be a lot more established and experienced engineers who seem to be using this approach. I'm guessing there is some part of the equation or mechanism that I'm just missing from my understanding.
No, you understand this quite well.
The reason why so many people and tools still advocate pagination with OFFSET and LIMIT (or FETCH FIRST n ROWS ONLY, to use the standard's language) is that they don't know a lot about databases. It is easy to understand LIMIT and OFFSET even if you the word “index” to you has no other meaning than ”the last pages in a book”.
There is another reason: to implement key set pagination, you must have an ORDER BY clause in your query, that ORDER BY clause has to contain a unique column, and you have to create an index that supports that ordering.
Moreover, your database has to be able to handle conditions like
... WHERE (name, id) > ('last_found', 42)
and support a multi-column index scan for them.
Since many tools strive to support several database systems, they are likely to go for the simple but inefficient method that works with every query on most database systems.
I am using postgresql db.
my application manages many objects of the same type.
for each object my application performs intense db writing - each object has a line inserted to db at least once every 30 seconds. I also need to retrieve the data by object id.
my question is how it's best to design the database? use one huge table for all the objects (slower inserts) or use table for each object (more complicated retrievals)?
Tables are meant to hold a huge number of objects of the same type. So, your second option, that is one table per object, doesn't seem to look right. But of course, more information is needed.
My tip: start with one table. If you run into problems - mainly performance - try to split it up. It's not that hard.
Logically, you should use one table.
However, so called "write amplification" problem exhibited by PostgreSQL seems to have been one of the main reasons why Uber switeched from PostgreSQL to MySQL. Quote:
"For tables with a large number of secondary indexes, these
superfluous steps can cause enormous inefficiencies. For instance, if
we have a table with a dozen indexes defined on it, an update to a
field that is only covered by a single index must be propagated into
all 12 indexes to reflect the ctid for the new row."
Whether this is a problem for your workload, only measurement can tell - I'd recommend starting with one table, measuring performance, and then switching to multi-table (or partitioning, or perhaps switching the DBMS altogether) only if the measurements justify it.
A single table is probably the best solution if you are certain that all objects will continue to have the same attributes.
INSERT does not get significantly slower as the table grows – it is the number of indexes that slows down data modification.
I'd rather be worried about data growth. Do you have a design for getting rid of old data? Big DELETEs can be painful; sometimes partitioning helps.
For some reason I'm having a hard time getting over to some people that using a view in Postgres as you would use a table, is a bad idea.
As some background, there are a number of tables containing completely static data that is updated every few months via a batch import into different tables by date - table_201603 or table_201607. A view has then been created called 'table' which clients then use which is just a 'SELECT * FROM' of the table. When an updated batch of data is put into a new table the view is then updated to point at the new table. This means an in-place rename of the table does not need to take place that might mean downtime. This is in a version of Postgres before 9.3 where materialized views came in, just to clarify. These tables generally have about 100 million rows in them.
This is understandably leading to some confusing results when people are querying these views with very inconsistent query times. Sometimes queries are taking seconds, other times 20 or 30 milliseconds.
Additional: This is geospatial data, so they're doing geospatial queries on a view.
I know what many of the pitfalls here are - views are created on-the-fly like a sub-query, you're very much at the whim of the query planner as to what predicates get brought down and how long results are cached as results aren't physically stored as tables - but can anyone see anything else and suggest a better way of doing this? I can imagine this would be a reasonably common scenario so it might help others.
Thanks,
In general, this reminds me a use case for synonym. However, there are no synonyms in Postgres and they recommend using Views and or separation by schema
https://www.postgresql.org/message-id/kon2r2$mo6$1#ger.gmane.org
I have a analytic table that contains 10 million records and for producing charts i have to fetch records from analytic table. several other tables are also joined to this table and data is fetched currently But it takes around 10 minutes even though i have indexed the joined column and i have used Materialized views in Postgres.But still performance is very low it takes 5 mins for executing the select query from Materialized view.
Please suggest me some technique to get the result within 5sec. I dont want to change the DB storage structure as so much of code changes has to be done to support it. I would like to know if there is some in built methods for query speed improvement.
Thanks in Advance
In general you can take care of this issue by creating a better data structure(Most engines do this to an extent for you with keys).
But if you were to create a sorting column of sorts. and create a tree like structure then you'd be left to a search rate of (N(log[N]) rather then what you may be facing right now. This will ensure you always have a huge speed up in your searches.
This is in regards to binary tree's, Red-Black trees and so on.
Another implementation for a speedup may be to make use of something allong the lines of REDIS, ie - a nice database caching layer.
For analytical reasons in the past I have also chosen to make use of technologies related to hadoop. Though this may be a larger migration in your case at this point.
I’m having a question about the fine line between the gain of an index to a table there is growing steadily in size every month and the gain of queries with an index.
The situation is, that I’ve two tables, Table1 and Table2. Each table grows slowly but regularly each month (with about 100 new rows for Table1 and a couple of rows for Table2).
My concrete question is whether to have an index or to drop it. I’ve made some measurement that an covering index on Table2 improve my SELECT queries and some rather much but again, I’ve to consider the pros and cons but having a really hard time to decide.
For Table1 it might not be necessary to have an index because the SELECT queries there is not that common.
I would appreciate any suggestion, tips or just good advice to what is a good solution.
By the way, I’m using IBM DB2 version 9.7 as my Database system
Sincerely
Mestika
Any additional index will make your inserts slower and your queries faster.
To take a smart decision, you will have to measure exactly by how much, with the amount of data that you expect to see. If you have multiple clients accessing the database at the same time, it may make sense to write a small multithreaded application that simulates the maximum load, both for inserts and for queries.
Your results will depend on the nature of your data and on the hardware that you are running. If you want to know the best answer for your usecase, there is no way around testin accurately yourself with your data and your hardware.
Then you will have to ask yourself:
Which query performance do I need?
If the query performance is good enough without the index anyway, easy: Don't add the index!
Which insert performance do I need?
Can it drop below the needed limit with the additional index? If not, easy: Add the index!
If you discover that you absolutely need the index for query performance and you can't get the required insert performance with the index, you may need to buy better hardware. Solid state discs can do wonders for database servers and they are getting affordable.
If your system is running fine for everyone anyway, worry less, let it run as is.