How to round off ten random numbers in array? - perl

Trying to generate ten numbers which are random and without decimal point.
my #randoms = map { rand } (1..10)
This code returns ten random numbers yet with decimal like
0.218220758325518.
I want round off these numbers.
Need a help. Thanks.

rand can take a parameter that specifies the supremum of the generated numbers. Just call int to truncate it:
my #randoms = map int rand 20, 1 .. 10;
It generates numbers in the range 0 .. 19.

Related

Hash an 8 digit number that contains non repetitive digits from 1 to 8 only

Given that a number can contain only digits from 1 to 8 (with no repetition), and is of length 8, how can we hash such numbers without using a hashSet?
We can't just directly use the value of the number of the hashing value, as the stack size of the program is limited. (By this, I mean that we can't directly make the index of an array, represent our number).
Therefore, this 8 digit number needs to be mapped to, at maximum, a 5 digit number.
I saw this answer. The hash function returns a 8-digit number, for a input that is an 8-digit number.
So, what can I do here?
There's a few things you can do. You could subtract 1 from each digit and parse it as an octal number, which will map one-to-one every number from your domain to the range [0,16777216) with no gaps. The resulting number can be used as an index into a very large array. An example of this could work as below:
function hash(num) {
return parseInt(num
.toString()
.split('')
.map(x => x - 1), 8);
}
const set = new Array(8**8);
set[hash(12345678)] = true;
// 12345678 is in the set
Or if you wanna conserve some space and grow the data structure as you add elements. You can use a tree structure with 8 branches at every node and a maximum depth of 8. I'll leave that up to you to figure out if you think it's worth the trouble.
Edit:
After seeing the updated question, I began thinking about how you could probably map the number to its position in a lexicographically sorted list of the permutations of the digits 1-8. That would be optimal because it gives you the theoretical 5-digit hash you want (under 40320). I had some trouble formulating the algorithm to do this on my own, so I did some digging. I found this example implementation that does just what you're looking for. I've taken inspiration from this to implement the algorithm in JavaScript for you.
function hash(num) {
const digits = num
.toString()
.split('')
.map(x => x - 1);
const len = digits.length;
const seen = new Array(len);
let rank = 0;
for(let i = 0; i < len; i++) {
seen[digits[i]] = true;
rank += numsBelowUnseen(digits[i], seen) * fact(len - i - 1);
}
return rank;
}
// count unseen digits less than n
function numsBelowUnseen(n, seen) {
let count = 0;
for(let i = 0; i < n; i++) {
if(!seen[i]) count++;
}
return count;
}
// factorial fuction
function fact(x) {
return x <= 0 ? 1 : x * fact(x - 1);
}
kamoroso94 gave me the idea of representing the number in octal. The number remains unique if we remove the first digit from it. So, we can make an array of length 8^7=2097152, and thus use the 7-digit octal version as index.
If this array size is bigger than the stack, then we can use only 6 digits of the input, convert them to their octal values. So, 8^6=262144, that is pretty small. We can make a 2D array of length 8^6. So, total space used will be in the order of 2*(8^6). The first index of the second dimension represents that the number starts from the smaller number, and the second index represents that the number starts from the bigger number.

How do I display a large number in scientific notation?

Using AutoIt, when I multiply 1 by 10^21, I get 1e+021. But in separate steps, such as multiplying 1 by 10^3 seven times, I get the overflow value of 3875820019684212736.
It appears AutoIt cannot handle numbers with more than eighteen digits. Is there a way around this? For example, can I multiply 10,000,000,000,000,000 by 1000 and have the result displayed as 1e+019?
Try this UDF : BigNum UDF
Example :
$X = "9999999999999999999999999999999"
$Y = "9999999999999999999999999999999"
$product = _BigNum_Mul($X, $Y)

How big can the argument to Perl's rand be?

rand(n) returns a number between 0 and n. Will rand work as expected, with regard to "randomness", for all arguments up to the integer limit on my platform?
This is going to depend on your randbits value:
rand calls your system's random number generator (or whichever one was
compiled into your copy of Perl). For this discussion, I'll call that
generator RAND to distinguish it from rand, Perl's function. RAND produces
an integer from 0 to 2**randbits - 1, inclusive, where randbits is a small
integer. To see what it is in your perl, use the command 'perl
-V:randbits'. Common values are 15, 16, or 31.
When you call rand with an argument arg, perl takes that value as an
integer and calculates this value.
arg * RAND
rand(arg) = ---------------
2**randbits
This value will always fall in the range required.
0 <= rand(arg) < arg
But as arg becomes large in comparison to 2**randbits, things become
problematic. Let's imagine a machine where randbits = 15, so RAND ranges
from 0..32767. That is, whenever we call RAND, we get one of 32768
possible values. Therefore, when we call rand(arg), we get one of 32768
possible values.
It depends on the number of bits used by your system's (pseudo)random number generator. You can find this value via
perl -V:randbits
or within a program via
use Config;
my $randbits = $Config{randbits};
rand can generate 2^randbits distinct random numbers. While you can generate numbers larger than 2^randbits, you can't generate all of the integer values in the range [0, N) when N > 2^randbits.
Values of N which aren't a power of two can also be problematic, as the distribution of (integer truncated) random values won't quite be flat. Some values will be slightly over-represented, others slightly under-represented.
It's worth noting that randbits is a paltry 15 on Windows. This means you can only get 32768 (2**15) distinct values. You can improve the situation by making multiple calls to rand and combining the values:
use Config;
use constant RANDBITS => $Config{randbits};
use constant RAND_MAX => 2**RANDBITS;
sub double_rand {
my $max = shift || 1;
my $iv =
int rand(RAND_MAX) << RANDBITS
| int rand(RAND_MAX);
return $max * ($iv / 2**(2*RANDBITS));
}
Assuming randbits = 15, double_rand mimics randbits = 30, providing 1073741824 (2**30) possible distinct values. This alleviates (but can never eliminate) both of the problems mentioned above.
We are talking about big random integers and whether it is possible to get them. It should be noted that the concatenation of two random integers is also a random integer. So if your system, for any reason, cannot go beyond 999999999999, then just write
$bigrand = int(rand(999999999999)).int(rand(999999999999));
and you'll get a random integer of (maximally) twice the length.
(Actually this is not a numeric answer to the question “how big a rand number can be” but rather the answer “you can get as big as you want, just concatenate small numbers”.)

binary to decimal in objective-c

I want to convert the decimal number 27 into binary such a way that , first the digit 2 is converted and its binary value is placed in an array and then the digit 7 is converted and its binary number is placed in that array. what should I do?
thanks in advance
That's called binary-coded decimal. It's easiest to work right-to-left. Take the value modulo 10 (% operator in C/C++/ObjC) and put it in the array. Then integer-divide the value by 10 (/ operator in C/C++/ObjC). Continue until your value is zero. Then reverse the array if you need most-significant digit first.
If I understand your question correctly, you want to go from 27 to an array that looks like {0010, 0111}.
If you understand how base systems work (specifically the decimal system), this should be simple.
First, you find the remainder of your number when divided by 10. Your number 27 in this case would result with 7.
Then you integer divide your number by 10 and store it back in that variable. Your number 27 would result in 2.
How many times do you do this?
You do this until you have no more digits.
How many digits can you have?
Well, if you think about the number 100, it has 3 digits because the number needs to remember that one 10^2 exists in the number. On the other hand, 99 does not.
The answer to the previous question is 1 + floor of Log base 10 of the input number.
Log of 100 is 2, plus 1 is 3, which equals number of digits.
Log of 99 is a little less than 2, but flooring it is 1, plus 1 is 2.
In java it is like this:
int input = 27;
int number = 0;
int numDigits = Math.floor(Log(10, input)) + 1;
int[] digitArray = new int [numDigits];
for (int i = 0; i < numDigits; i++) {
number = input % 10;
digitArray[numDigits - i - 1] = number;
input = input / 10;
}
return digitArray;
Java doesn't have a Log function that is portable for any base (it has it for base e), but it is trivial to make a function for it.
double Log( double base, double value ) {
return Math.log(value)/Math.log(base);
}
Good luck.

choose random value

I am new to iPhone programming. I have 10 number say (1,2,3,4,5,6,7,8,9,10). I want to choose randomly 1 number from the above 10 numbers. How can I choose a random number from a set of numbers?
If you simply want a value between 1 and 10, you can use the standard C rand() method. This returns an integer between zero and RAND_MAX.
To get a value between 0 and 9 you can use the % operator. So to get a value between 1 and 10 you can use:
rand()%10 + 1
If you don't want the same series of pseudo random numbers each time, you'll need to use srand to seed the random number generator. A good value to seed it with would be the current time.
If you're asking about choosing a number from a list of arbitrary (and possibly non consecutive) numbers, you could use the following.
int numbers[] = {2,3,5,7,11,13,17,19,23,29};
int randomChoice = numbers[rand()%10];
To generate a random number you should use random() function. But if you call it twice it gives you two equal answers. Before calling random(), call srand(time()) to get fresh new random number. if you want to use for(int i = 0; ...) to create numbers,
use srand(time() + i).
Something like this:
- (IBAction)generate:(id)sender
{
// Generate a number between 1 and 10 inclusive
int generated;
generated = (random() % 10) + 1;
}