Unity, Relative dimensions of gameobjects - unity3d

I saw some documents saying that there is no concepts of length in Unity. All you can do to determine the dimensions of the gameobjects is to use Scale.
Then how could I set the overall relative dimensions between the gameobjects?
For example, the dimension of a 1:1:1 plane is obviously different from a 1:1:1 sphere! Then how could I know what's the relative ratios between the plane and the sphere? 1 unit length of the plane is equal to how much unit of the diameter of the sphere!? Otherwise how could I know if I had set everything in the right proportion?

Well, what you say is right, but consider that objects could have a collider. And, in case of a sphere, you could obtain the radius with SphereCollider.radius.
Also, consider Bounds.extents, that's relative to the objects's bounding box.
Again, considering the Sphere, you can obtain the diameter with:
Mesh mesh = GetComponent<MeshFilter>().mesh;
Bounds bounds = mesh.bounds;
float diameter = bounds.extents.x * 2;

All GameObjects in unity have a Transform component, which determines its position, rotation and scale. Most 3D Objects also have a MeshFilter component, which contains reference to the Mesh object.
The Mesh contains the actual shape of the object, for example six faces of a cube or, faces of a sphere. Unity provides a handful of built in objects (cube, sphere, cyliner, plane, quad), but this is just a 'starter kit'. Most of those built in objects are 1 unit in size, but this is purely because the vertexes have been placed in those positions (so you need to scale by 2 to get 2units size).
But there is no limit on positinos within a mesh, you can have a tiny tiny object od a whole terrain object, and have them massively different in size despite keeping their scale at 1.
You should try to learn some 3D modelling application to create arbitrary objects.
Alternatively try and install a plugin called ProBuilder which used to be quite expensive and is nowe free (since acquired by Unity) which enabels in-editor modelling.
Scales are best kept at one, but its good to have an option to scale - this way you can re-use the spehre mesh, or the cube mesh, (less waste of memory) by having them at different scales.

In most unity applications you set the scale to some arbitrary number.
So typically 1 m = 1 unit.
All things that are 1 unit tall are 1 m tall.
If you import a mesh from a modelling program that is the wrong size, scale it to exactly one meter (use a standard 1,1,1 cube as reference). Then, stick it inside an empty game object to “convert” it into your game’s proper scale. So now if you scale the empty object’s y axis to 2, the object is now 2 meters tall.
A better solution is to keep all objects’ highest parent in the hierarchy at 1,1,1 scale. Using the 1,1,1 reference cube, scale your object to a size that looks proper. So for example if I had a model of a person I’d want it to be scaled to be roughly twice as tall as the cube. Then, drag it into an empty object of 1,1,1 scale this way, everything in your scene’s “normal” size is 1,1,1. If you want to double the size of something you’d then make it 2,2,2. In practice this is much more useful than the first option.
Now, if you change its position by 1 unit it is moving effectively by what would look like the proper 1 m also.
This process also lets you change where the “bottom” of an object is. You can change the position of the object inside the empty, making an “offset”. This is Useful for making models stand right on the ground with position y=0.

Related

Why is my Unity plane seemingly 10 times too big

I'm a relative Unity noob. I have a fairly simple scene. Currently in the following you will see a plane (object WorldTilemapGfx) and 2 sprites (Tile C: 0 R: 0, and Tile C: 1 R: 0).
In the following picture you see I've selected one of the sprites. Its scale is 1 x 1, and its at position 1, 0.
Now I select the other sprite.
So far the positions and sizes seem ok.
Now if I select the game object with a "plane" mesh it shows in the inspector as scale 2, 1. This is the scale I expect since it is supposed to be as wide as two of the tiles above, and as high as only 1 of them.
However its visually 10 times too big.
If I increase the X scale of one of my tiles by 10, then the relative sizes between tile and plane look ok
Also the image used for my tile is 256 x 256.
Can someone suggest what I am missing? Thanks.
See Unity Mesh Primitives
Plane
This is a flat square with edges ten units long oriented in the XZ plane of the local coordinate space. It is textured so that the whole image appears exactly once within the square. A plane is useful for most kinds of flat surface, such as floors and walls. A surface is also needed sometimes for showing images or movies in GUI and special effects. Although a plane can be used for things like this, the simpler quad primitive is often a more natural fit to the task.
whereas
Quad
The quad primitive resembles the plane but its edges are only one unit long and the surface is oriented in the XY plane of the local coordinate space. Also, a quad is divided into just two triangles whereas the plane contains two hundred. A quad is useful in cases where a scene object must be used simply as a display screen for an image or movie. Simple GUI and information displays can be implemented with quads, as can particles, sprites
and “impostor” images that substitute for solid objects viewed at a distance.
Ok.. confirmed using a Quad gave me what I expected in scale.. I now understand that the underlying plane mesh is actually 10 x 10 in size.
https://forum.unity.com/threads/really-dumb-question-scale-of-plane-compared-to-cube.33835/#:~:text=aNTeNNa%20trEE%20said%3A-,The%20plane%20is%20a%2010x10%20unit%20mesh.,a%20quick%20floor%20or%20wall.

How to create a large terrain with tile-level properties?

I need to create a 3D large terrain (say 2000x2000) where I need to track properties of the terrain surface at 1x1 resolution. For example, I want to keep track of how much grass or stones is in 1x1 area, which may change as game progresses depending on resource consumption. Based on that I want change visual appearance of that 1x1 area. What are my options?
While I have created a 1x1 tile that tracks above properties, I have read it may not scale for the size of my terrain. Also, aligning each title with varying terrain heights (I expect terrain to have smooth height changes but it may not exceed a few 10s of units) using projection is not easy.
I see placing a grid over terrain as another option to place objects. But not sure how to track properties at each grid cell or update 1x1 terrain area at that point.

Transformation unity 3d

I'm learning unity by the book "Unity game development in 24 hours". The book says:
Translation: Translation is a inert transformation. That means any changes applied after it won't be affected.
Scaling: Scaling effectively changes the size of the local coordinate grid. Basically, when you scale an object to be larger, you are really scaling the local coordinate system to be larger. This causes the object to seem to grow. This change is multiplicative. For example, if an object is scaled to 1 (its natural, default size) and then translated 5 units along the x axis, the object appears to move 5 units to the right. If the same object were to be scaled to 2, however, then translating 5 units on the x axis would result in the object appearing to move 10 units to the right. This is because the local coordinate system is now double the size and 5 times 2 equals 10. Inversely, if the object were scaled to .5 and then moved, it would appear to only move 2.5 units (.5 x 5 = 2.5)
I tried to experiment this two effects but it didn't work that way. To the Translation, I can apply any changes after it. And to the Scaling, it scaled the local coordinate system in multiplicative way but it didn't multi the affect of translation. Am I understand this wrong or it's the book?
Translating (using Transform.Translate method) means moving object's transform by some vector. Simple as that.
Local scale is little bit more complicated. It scales not only the object itself, but all objects, that are children of it. And the distance moved is relative - if you have a cube that's 1x1x1 in size and you move it by 1 unit, it will move its full length. If, however, you scale it by 2 and than move it by 1 unit, it moves only half its size.
According to what you wrote, the book is probably really bad source to learn Unity3D. Try doing some official tutorials, they are really good and explain the basics really well. This one is pretty good, this one as well. And remember, anytime you are in doubt with Unity. try to search their really good documentation first.

3d reconstruction from 2 views

I'm doing some study on the 3d reconstruction from two views and fixed known camera focal length. Something that is unclear to me is does triangulation gives us the real world scale of an object or the scale of the result is different to the actual one? If the scale is different than the actual size, how can I find the depth of points from it? I was wondering if there is more information that I need to create a real world scale of object.
Scale is arbitrary in SfM tasks so the result may be different in every reconstruction since points are initially projected on a random depth value.
You need at least one known distance in your scene to recover the absolute (real-world) scale. You can include one object with known size in your scene so you will be able to convert your scale afterwards.

Speeding up rendering in SceneKit

So, I am using SceneKit to render a collection of parametric surfaces (the sum of which make an object). To put these on screen I am creating custom geometries by sampling the points and creating triangles. Here is a quick over view of how I do it.
Loop through the collection of surfaces
Generate a random color C
For each surface calculate a grid of N x N points (both positions and normals)
Assign all vertexes for that surface the color C
Add groups of 3 vertexes from this surface to the face index list
And that seems to work. After I get all this data, I make it into the proper structures (SCNGeometrySource and SCNGeometryElement) and make a SCNGeometry like so
SCNGeometry(sources: [vertexSource, normalSource, colorSource], elements: [element])
This works and displays my surfaces on the screen fine as one single geometry element. My problem is, I have some really complicated objects that I am trying to work with and it is just running really slow to move the camera around when looking at the object. Rendering is taking around 500 ms. Which is making my frame rate and experience awful.
So the question is, what steps can I take to speed up SceneKit performance? I did this same project with WebGL using Three.js with the same amount of data and was able to use an orbiting camera fine, so I can't believe that scene kit couldn't at least compete with that. What features can I tweak and turn off to speed up performance? I am using the triangle primitive type, the allowsCameraControl = true for the orbiting camera, and metal for the SCNView.
For those curious, the model I am struggling on generated 231,900 vertices and 347,850 indices for faces (11.1312 MB of vertex data (position and normal) and 1.3914 MB of face data (essentially just index positions of vertexes in order for triangles.))
1) If you are "standing" on center of your generated surface, then your problem maybe that you drawing alot offscreen (no frustum culling) and you need to split your sufrface (single node) into subsurfaces (child nodes), so only nodes that is visible in camera view space is drawn.
That being said, 231,900 vertices is really not much, I draw several milions #60fps with SceneKit Metal renderer (+20% faster than using OpenGL renderer) on OSX.
2) If you are looking on your surfaces from distance and have bad performance, check what ammount of bytesPerComponent: you feeding when creating SCNGeometrySource. I experienced big performance drop when using CGFloat (double) instead of plain float on GeForce GTX (while okay on integrated Intel graphics).