I'd like a function that a column and a list of bucket ranges as arguments and returns the appropriate bucket. I want to solve this with the Spark API and don't want to use a UDF.
Let's say we start with this DataFrame (df):
+--------+
|some_num|
+--------+
| 3|
| 24|
| 45|
| null|
+--------+
Here's the desired behavior of the function:
df.withColumn(
"bucket",
bucketFinder(
col("some_num"),
Array(
(0, 10),
(10, 20),
(20, 30),
(30, 70)
)
)
).show()
+--------+------+
|some_num|bucket|
+--------+------+
| 3| 0-10|
| 24| 20-30|
| 45| 30-70|
| null| null|
+--------+------+
Here is the code I tried that does not work:
def bucketFinder(col: Column, buckets: Array[(Any, Any)]): Column = {
buckets.foreach { res: (Any, Any) =>
when(col.between(res._1, res._2), lit(s"$res._1 - $res._2"))
}
}
It's pretty easy to write this code with a UDF, but hard when constrained to only the Spark API.
You can divide the column by 10 and then the floor and ceil of the column should make the bucket you need:
val bucket_size = 10
val floor_col = floor(df("some_num") / bucket_size) * bucket_size
df.withColumn("bucket", concat_ws("-", floor_col, floor_col + bucket_size)).show
+--------+------+
|some_num|bucket|
+--------+------+
| 3| 0-10|
| 24| 20-30|
For a bucket size of 5:
val bucket_size1 = 5
val floor_col = floor(df("some_num") / bucket_size1) * bucket_size1
df.withColumn("bucket", concat_ws("-", floor_col, floor_col + bucket_size1)).show
+--------+------+
|some_num|bucket|
+--------+------+
| 3| 0-5|
| 24| 20-25|
Here is a pure Spark solution:
def bucketFinder(col: Column, buckets: Array[(Any, Any)]): Column = {
val b = buckets.map { res: (Any, Any) =>
when(col.between(res._1, res._2), lit(s"${res._1}-${res._2}"))
}
coalesce(b: _*)
}
I'll leave this question open for a bit to see if someone else has a more elegant solution.
Related
I would like to create a Map column which counts the number of occurrences.
For instance:
+---+----+
| b| a|
+---+----+
| 1| b|
| 2|null|
| 1| a|
| 1| a|
+---+----+
would result in
+---+--------------------+
| b| res|
+---+--------------------+
| 1|[a -> 2.0, b -> 1.0]|
| 2| []|
+---+--------------------+
For the moment, in Spark 2.4.6, I was able to make it using udaf.
While bumping to Spark3 I was wondering if I could get rid of this udaf (I tried using the new method aggregate without success)
Is there an efficient way to do it?
(For the efficiency part, I am able to test easily)
Here a Spark 3 solution:
import org.apache.spark.sql.functions._
df.groupBy($"b",$"a").count()
.groupBy($"b")
.agg(
map_from_entries(
collect_list(
when($"a".isNotNull,struct($"a",$"count"))
)
).as("res")
)
.show()
gives:
+---+----------------+
| b| res|
+---+----------------+
| 1|[b -> 1, a -> 2]|
| 2| []|
+---+----------------+
Here the solution using Aggregator:
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.expressions.Aggregator
import org.apache.spark.sql.functions._
import org.apache.spark.sql.Encoder
val countOcc = new Aggregator[String, Map[String,Int], Map[String,Int]] with Serializable {
def zero: Map[String,Int] = Map.empty.withDefaultValue(0)
def reduce(b: Map[String,Int], a: String) = if(a!=null) b + (a -> (b(a) + 1)) else b
def merge(b1: Map[String,Int], b2: Map[String,Int]) = {
val keys = b1.keys.toSet.union(b2.keys.toSet)
keys.map{ k => (k -> (b1(k) + b2(k))) }.toMap
}
def finish(b: Map[String,Int]) = b
def bufferEncoder: Encoder[Map[String,Int]] = implicitly(ExpressionEncoder[Map[String,Int]])
def outputEncoder: Encoder[Map[String, Int]] = implicitly(ExpressionEncoder[Map[String, Int]])
}
val countOccUDAF = udaf(countOcc)
df
.groupBy($"b")
.agg(countOccUDAF($"a").as("res"))
.show()
gives:
+---+----------------+
| b| res|
+---+----------------+
| 1|[b -> 1, a -> 2]|
| 2| []|
+---+----------------+
You could always use collect_list with UDF, but only if you groupings are not too lage:
val udf_histo = udf((x:Seq[String]) => x.groupBy(identity).mapValues(_.size))
df.groupBy($"b")
.agg(
collect_list($"a").as("as")
)
.select($"b",udf_histo($"as").as("res"))
.show()
gives:
+---+----------------+
| b| res|
+---+----------------+
| 1|[b -> 1, a -> 2]|
| 2| []|
+---+----------------+
This should be faster than UDAF: Spark custom aggregation : collect_list+UDF vs UDAF
We can achieve this is spark 2.4
//GET THE COUNTS
val groupedCountDf = originalDf.groupBy("b","a").count
//CREATE MAPS FOR EVERY COUNT | EMPTY MAP FOR NULL KEY
//AGGREGATE THEM AS ARRAY
val dfWithArrayOfMaps = groupedCountDf
.withColumn("newMap", when($"a".isNotNull, map($"a",$"count")).otherwise(map()))
.groupBy("b").agg(collect_list($"newMap") as "multimap")
//EXPRESSION TO CONVERT ARRAY[MAP] -> MAP
val mapConcatExpr = expr("aggregate(multimap, map(), (k, v) -> map_concat(k, v))")
val finalDf = dfWithArrayOfMaps.select($"b", mapConcatExpr.as("merged_data"))
Here a solution with a single groupBy and a slightly complex sql expression. This solution works for Spark 2.4+
df.groupBy("b")
.agg(expr("sort_array(collect_set(a)) as set"),
expr("sort_array(collect_list(a)) as list"))
.withColumn("res",
expr("map_from_arrays(set,transform(set, x -> size(filter(list, y -> y=x))))"))
.show()
Output:
+---+------+---------+----------------+
| b| set| list| res|
+---+------+---------+----------------+
| 1|[a, b]|[a, a, b]|[a -> 2, b -> 1]|
| 2| []| []| []|
+---+------+---------+----------------+
The idea is to collect the data from column a twice: one time into a set and one time into a list. Then with the help of transform for each element of the set the number of occurences of the particular element in the list is counted. Finally, the set and the number of elements are combined with map_from_arrays.
However I cannot say if this approach is really faster than a UDAF.
My goal is to create columns from another MapType column. The names of the columns being the keys of the Map and their associated values.
Below my starting dataframe:
+-----------+---------------------------+
|id | mapColumn |
+-----------+---------------------------+
| 1 |Map(keyA -> 0, keyB -> 1) |
| 2 |Map(keyA -> 4, keyB -> 2) |
+-----------+---------------------------+
Below the desired output:
+-----------+----+----+
|id |keyA|keyB|
+-----------+----+----+
| 1 | 0| 1|
| 2 | 4| 2|
+-----------+----+----+
I found a solution whith a Foldleft with accumulators (work but extremely slow):
val colsToAdd = startDF.collect()(0)(1).asInstanceOf[Map[String,Integer]].map(x => x._1).toSeq
res1: Seq[String] = List(keyA, keyB)
val endDF = colsToAdd.foldLeft(startDF)((startDF, key) => startDF.withColumn(key, lit(0)))
//(lit(0) for testing)
The real starting dataframe being enormous, I need optimization.
You could simply use explode function to explode the map type column and then use pivot to get each key as new column. Something like this:
val df = Seq((1,Map("keyA" -> 0, "keyB" -> 1)), (2,Map("keyA" -> 4, "keyB" -> 2))
).toDF("id", "mapColumn")
df.select($"id", explode($"mapColumn"))
.groupBy($"id")
.pivot($"key")
.agg(first($"value"))
.show()
Gives:
+---+----+----+
| id|keyA|keyB|
+---+----+----+
| 1| 0| 1|
| 2| 4| 2|
+---+----+----+
+----+----+--------+
| Id | M1 | trx |
+----+----+--------+
| 1 | M1 | 11.35 |
| 2 | M1 | 3.4 |
| 3 | M1 | 10.45 |
| 2 | M1 | 3.95 |
| 3 | M1 | 20.95 |
| 2 | M2 | 25.55 |
| 1 | M2 | 9.95 |
| 2 | M2 | 11.95 |
| 1 | M2 | 9.65 |
| 1 | M2 | 14.54 |
+----+----+--------+
With the above dataframe I should be able to generate a histogram as below using the below code.
Similar Queston is here
val (Range,counts) = df
.select(col("trx"))
.rdd.map(r => r.getDouble(0))
.histogram(10)
// Range: Array[Double] = Array(3.4, 5.615, 7.83, 10.045, 12.26, 14.475, 16.69, 18.905, 21.12, 23.335, 25.55)
// counts: Array[Long] = Array(2, 0, 2, 3, 0, 1, 0, 1, 0, 1)
But Issue here is,how can I parallely create the histogram based on column 'M1' ?This means I need to have two histogram output for column Values M1 and M2.
First, you need to know that histogram generates two separate sequential jobs. One to detect the minimum and maximum of your data, one to compute the actual histogram. You can check this using the Spark UI.
We can follow the same scheme to build histograms on as many columns as you wish, with only two jobs. Yet, we cannot use the histogram function which is only meant to handle one collection of doubles. We need to implement it by ourselves. The first job is dead simple.
val Row(min_trx : Double, max_trx : Double) = df.select(min('trx), max('trx)).head
Then we compute locally the ranges of the histogram. Note that I use the same ranges for all the columns. It allows to compare the results easily between the columns (by plotting them on the same figure). Having different ranges per column would just be a small modification of this code though.
val hist_size = 10
val hist_step = (max_trx - min_trx) / hist_size
val hist_ranges = (1 until hist_size)
.scanLeft(min_trx)((a, _) => a + hist_step) :+ max_trx
// I add max_trx manually to avoid rounding errors that would exclude the value
That was the first part. Then, we can use a UDF to determine in what range each value ends up, and compute all the histograms in parallel with spark.
val range_index = udf((x : Double) => hist_ranges.lastIndexWhere(x >= _))
val hist_df = df
.withColumn("rangeIndex", range_index('trx))
.groupBy("M1", "rangeIndex")
.count()
// And voilĂ , all the data you need is there.
hist_df.show()
+---+----------+-----+
| M1|rangeIndex|count|
+---+----------+-----+
| M2| 2| 2|
| M1| 0| 2|
| M2| 5| 1|
| M1| 3| 2|
| M2| 3| 1|
| M1| 7| 1|
| M2| 10| 1|
+---+----------+-----+
As a bonus, you can shape the data to use it locally (within the driver), either using the RDD API or by collecting the dataframe and modifying it in scala.
Here is one way to do it with spark since this is a question about spark ;-)
val hist_map = hist_df.rdd
.map(row => row.getAs[String]("M1") ->
(row.getAs[Int]("rangeIndex"), row.getAs[Long]("count")))
.groupByKey
.mapValues( _.toMap)
.mapValues( hists => (1 to hist_size)
.map(i => hists.getOrElse(i, 0L)).toArray )
.collectAsMap
EDIT: how to build one range per column value:
Instead of computing the min and max of M1, we compute it for each value of the column with groupBy.
val min_max_map = df.groupBy("M1")
.agg(min('trx), max('trx))
.rdd.map(row => row.getAs[String]("M1") ->
(row.getAs[Double]("min(trx)"), row.getAs[Double]("max(trx)")))
.collectAsMap // maps each column value to a tuple (min, max)
Then we adapt the UDF so that it uses this map and we are done.
// for clarity, let's define a function that generates histogram ranges
def generate_ranges(min_trx : Double, max_trx : Double, hist_size : Int) = {
val hist_step = (max_trx - min_trx) / hist_size
(1 until hist_size).scanLeft(min_trx)((a, _) => a + hist_step) :+ max_trx
}
// and use it to generate one range per column value
val range_map = min_max_map.keys
.map(key => key ->
generate_ranges(min_max_map(key)._1, min_max_map(key)._2, hist_size))
.toMap
val range_index = udf((x : Double, m1 : String) =>
range_map(m1).lastIndexWhere(x >= _))
Finally, just replace range_index('trx) by range_index('trx, 'M1) and you will have one range per column value.
The way I do histograms with Spark is as follows:
val binEdes = 0.0 to 25.0 by 5.0
val bins = binEdes.init.zip(binEdes.tail).toDF("bin_from","bin_to")
df
.join(bins,$"trx">=$"bin_from" and $"trx"<$"bin_to","right")
.groupBy($"bin_from",$"bin_to")
.agg(
count($"trx").as("count")
// add more, e.g. sum($"trx)
)
.orderBy($"bin_from",$"bin_to")
.show()
gives:
+--------+------+-----+
|bin_from|bin_to|count|
+--------+------+-----+
| 0.0| 5.0| 2|
| 5.0| 10.0| 2|
| 10.0| 15.0| 4|
| 15.0| 20.0| 0|
| 20.0| 25.0| 1|
+--------+------+-----+
Now if you have more dimensions, just add that to the groupBy-clause
df
.join(bins,$"trx">=$"bin_from" and $"trx"<$"bin_to","right")
.groupBy($"M1",$"bin_from",$"bin_to")
.agg(
count($"trx").as("count")
)
.orderBy($"M1",$"bin_from",$"bin_to")
.show()
gives:
+----+--------+------+-----+
| M1|bin_from|bin_to|count|
+----+--------+------+-----+
|null| 15.0| 20.0| 0|
| M1| 0.0| 5.0| 2|
| M1| 10.0| 15.0| 2|
| M1| 20.0| 25.0| 1|
| M2| 5.0| 10.0| 2|
| M2| 10.0| 15.0| 2|
+----+--------+------+-----+
You may tweak to code a bit to get the output you want, but this should get you started. You could also do the UDAF approach I posted here : Spark custom aggregation : collect_list+UDF vs UDAF
I think its not easily possible using RDD's, because histogram is only available on DoubleRDD, i.e. RDDs of Double. If you really need to use RDD API, you can do it in parallel by firing parallel jobs, this can be done using scalas parallel collection:
import scala.collection.parallel.immutable.ParSeq
val List((rangeM1,histM1),(rangeM2,histM2)) = ParSeq("M1","M2")
.map(c => df.where($"M1"===c)
.select(col("trx"))
.rdd.map(r => r.getDouble(0))
.histogram(10)
).toList
println(rangeM1.toSeq,histM1.toSeq)
println(rangeM2.toSeq,histM2.toSeq)
gives:
(WrappedArray(3.4, 5.155, 6.91, 8.665000000000001, 10.42, 12.175, 13.930000000000001, 15.685, 17.44, 19.195, 20.95),WrappedArray(2, 0, 0, 0, 2, 0, 0, 0, 0, 1))
(WrappedArray(9.65, 11.24, 12.83, 14.420000000000002, 16.01, 17.6, 19.19, 20.78, 22.37, 23.96, 25.55),WrappedArray(2, 1, 0, 1, 0, 0, 0, 0, 0, 1))
Note that the bins differ here for M1 and M2
I am a new developer on Scala and I met some problems to write a simple code on Spark Scala. I have this DF that I get after reading a parquet file :
ID Timestamp
1 0
1 10
1 11
2 20
3 15
And what I want is to create a DF result from the first DF (if the ID = 2 for example, the timestamp should be multiplied by two). So, I created a new class :
case class OutputData(id: bigint, timestamp:bigint)
And here is my code :
val tmp = spark.read.parquet("/user/test.parquet").select("id", "timestamp")
val outputData:OutputData = tmp.map(x:Row => {
var time_result
if (x.getString("id") == 2) {
time_result = x.getInt(2)* 2
}
if (x.getString("id") == 1) {
time_result = x.getInt(2) + 10
}
OutputData2(x.id, time_result)
})
case class OutputData2(id: bigint, timestamp:bigint)
Can you help me please ?
To make the implementation easier, you can cast your df using a case class, the process that Dataset with object notation instead of access to your row each time that you want the value of some element. Apart of that, based on your input and output will take have same format you can use same case class instead of define 2.
Code looks like:
// Sample intput data
val df = Seq(
(1, 0L),
(1, 10L),
(1, 11L),
(2, 20L),
(3, 15L)
).toDF("ID", "Timestamp")
df.show()
// Case class as helper
case class OutputData(ID: Integer, Timestamp: Long)
val newDF = df.as[OutputData].map(record=>{
val newTime = if(record.ID == 2) record.Timestamp*2 else record.Timestamp // identify your id and apply logic based on that
OutputData(record.ID, newTime)// return same format with updated values
})
newDF.show()
The output of above code:
// original
+---+---------+
| ID|Timestamp|
+---+---------+
| 1| 0|
| 1| 10|
| 1| 11|
| 2| 20|
| 3| 15|
+---+---------+
// new one
+---+---------+
| ID|Timestamp|
+---+---------+
| 1| 0|
| 1| 10|
| 1| 11|
| 2| 40|
| 3| 15|
+---+---------+
I have a two DataFrames:
scala> df1.show()
+----+----+----+---+----+
|col1|col2|col3| |colN|
+----+----+----+ +----+
| 2|null| 3|...| 4|
| 4| 3| 3| | 1|
| 5| 2| 8| | 1|
+----+----+----+---+----+
scala> df2.show() // has one row only (avg())
+----+----+----+---+----+
|col1|col2|col3| |colN|
+----+----+----+ +----+
| 3.6|null| 4.6|...| 2|
+----+----+----+---+----+
and a constant val c : Double = 0.1.
Desired output is a df3: Dataframe that is given by
,
with n=numberOfRow and m=numberOfColumn.
I already looked through the list of sql.functions and failed implementing it myself with some nested map operations (fearing performance issues). One idea I had was:
val cBc = spark.sparkContext.broadcast(c)
val df2Bc = spark.sparkContext.broadcast(averageObservation)
df1.rdd.map(row => {
for (colIdx <- 0 until row.length) {
val correspondingDf2value = df2Bc.value.head().getDouble(colIdx)
row.getDouble(colIdx) * (1 - cBc.value) + correspondingDf2value * cBc.value
}
})
Thank you in advance!
(cross)join combined with select is more than enough and will be much more efficient than mapping. Required imports:
import org.apache.spark.sql.functions.{broadcast, col, lit}
and expression:
val exprs = df1.columns.map { x => (df1(x) * (1 - c) + df2(x) * c).alias(x) }
join and select:
df1.crossJoin(broadcast(df2)).select(exprs: _*)