Bisection doesn't return a value - matlab

The function below, bisection, is supposed to find a root given three inputs: a function f, and an interval defined using the two parameters a and b. The intention is that the value of a and b are changed within the function to approach a common point, as long as their signs are different.
When I call my function like this:
bisection( #(x)x-1 ,-2,3)
no output is returned. What am I doing wrong?
function X = bisection(f,a,b)
if ge((f(a)*f(b)),0)
disp('Wrong')
return;
end
X = (a+b)/2;
while abs(X)>0.01
if f(X)*f(a)>0
X=a;
else
X=b;
end
end

Enter the Infinite!
Well done! You've written your first (and not last, believe me) infinite loop. The problem is threefold. Firstly your stop condition was abs(X) and should have been abs(f(X)) - you don't care for X to be zero, you want f(X) to be zeros. Secondly you don't update your your X correctly so your break condition is never hit (unless you are lucky to give this function symmetrical a,b bounds around the zero of the function). You could see this easily by adding a line like disp(f(X)); pause(0.5); somewhere in the while-loop.
In general try to avoid infinite loops with some explicit stop condition. In my code below I've put in the interaction limit past which the algorithm will just stop (it would be more elegant to catch that condition and warn the user of hitting the iteration limit...).
function x0 = bisection(f,a,b)
assert(f(a)*f(b)<0,'Invalid f(x) range. f(a)*f(b) >= 0');
tol = 0.00001; % Tolerance
iter_limit = 10000; % Limit of number of iterations
iter = 0;
x0 = (a+b)/2; % Midpoint
while abs(f(x0)) > tol && iter < iter_limit
if f(x0)*f(a) > 0
a = x0; % Zero to the right of the midpoint
else
b = x0; % Zero to the left
end
x0 = (a+b)/2; % Recalculate midpoint
iter = iter + 1;
end
end
This should work no problem with
f = #(x)x-1;
bisection(f,-2,3);
I get something like 0.999992370... which is within specified tolerance from the actual answer (1).

Related

How to setup equation that involves a sum from x=1 to infinity and loops?

I am getting confused on how to properly set up this equation. To find a value of V(i,j). The end result would be plotting V over time. I understand that there needs to be loops to allow this equation to work, however I am lost when it comes to setting it up. Basically I am trying to take the sum from n=1 to infinity of (1-(-1)^n)/(n^4 *pi^4)*sin((n*pi*c*j)/L)*sin((n*pi*i)/L)
I originally thought that I should make it a while loop to increment n by 1 until I reach say 10 or so just to get an idea of what the output would look like. All of the variables were unknown and values were added again to see what the plot would look like.
I have down another code where the equation is just dependent on i and j. However with this n term, I am thrown off. Any advice would be great as to setting up the equation. Thank you.
L=10;
x=linspace(0,L,30);
t1= 50;
X=30;
p=1
c=t1/1000;
V=zeros(X,t1);
V(1,:)=0;
V(30,:)=0;
R=((4*p*L^3)/c);
n=1;
t=1:50;
while n < 10
for i=1:31
for j=1:50
V(i,j)=R*sum((1-(-1)^n)/(n^4 *pi^4)*sin((n*pi*c*j)/L)*sin((n*pi*i)/L));
end
end
n=n+1;
end
figure(1)
plot(V(i,j),t)
Various ways of doing so:
1) Computing the sum up to one Nmax in one shot:
Nmax = 30;
Vijn = #(i,j,n) R*((1-(-1)^n)/(n^4 *pi^4)*sin((n*pi*c*j)/L)*sin((n*pi*i)/L));
i = 1:31;
j = 1:50;
n = 1:Nmax;
[I,J,N] = ndgrid(i,j,n);
V = arrayfun(Vijn,I,J,N);
Vc = cumsum(V,3);
% now Vc(:,:,k) is sum_n=1^{k+1} V(i,j,n)
figure(1);clf;imagesc(Vc(:,:,end));
2) Looping indefinitely
n = 1;
V = 0;
i = 1:31;
j = 1:50;
[I,J] = meshgrid(i,j);
while true
V = V + R*((1-(-1)^n)/(n^4 *pi^4)*sin((n*pi*c*J)/L).*sin((n*pi*I)/L));
n = n + 1;
figure(1);clf;
imagesc(V);
title(sprintf('N = %d',n))
drawnow;
pause(0.25);
end
Note that in your example you won't need many terms, since:
Every second term is zero (for even n, the term 1-(-1)^n is zero).
The terms decay with 1/n^4. In norms: n=1 contributes ~2e4, n=3 contributes ~4e2, n=5 contributes 5e1, n=7 contributes ~14, etc. Visually, there is a small difference between n=1 and n=1+n=3 but barely a noticeable one for n=1+n=3+n=5.
Given that so few terms are needed, the first approach is probably the better one. Also, skip the even indices, as you don't need them.

MatLab using Fixed Point method to find a root

I wanna find a root for the following function with an error less than 0.05%
f= 3*x*tan(x)=1
In the MatLab i've wrote that code to do so:
clc,close all
syms x;
x0 = 3.5
f= 3*x*tan(x)-1;
df = diff(f,x);
while (1)
x1 = 1 / 3*tan(x0)
%DIRV.. z= tan(x0)^2/3 + 1/3
er = (abs((x1 - x0)/x1))*100
if ( er <= 0.05)
break;
end
x0 = x1;
pause(1)
end
But It keeps running an infinite loop with error 200.00 I dunno why.
Don't use while true, as that's usually uncalled for and prone to getting stuck in infinite loops, like here. Simply set a limit on the while instead:
while er > 0.05
%//your code
end
Additionally, to prevent getting stuck in an infinite loop you can use an iteration counter and set a maximum number of iterations:
ItCount = 0;
MaxIt = 1e5; %// maximum 10,000 iterations
while er > 0.05 & ItCount<MaxIt
%//your code
ItCount=ItCount+1;
end
I see four points of discussion that I'll address separately:
Why does the error seemingly saturate at 200.0 and the loop continue infinitely?
The fixed-point iterator, as written in your code, is finding the root of f(x) = x - tan(x)/3; in other words, find a value of x at which the graphs of x and tan(x)/3 cross. The only point where this is true is 0. And, if you look at the value of the iterants, the value of x1 is approaching 0. Good.
The bad news is that you are also dividing by that value converging toward 0. While the value of x1 remains finite, in a floating point arithmetic sense, the division works but may become inaccurate, and er actually goes NaN after enough iterations because x1 underflowed below the smallest denormalized number in the IEEE-754 standard.
Why is er 200 before then? It is approximately 200 because the value of x1 is approximately 1/3 of the value of x0 since tan(x)/3 locally behaves as x/3 a la its Taylor Expansion about 0. And abs(1 - 3)*100 == 200.
Divisions-by-zero and relative orders-of-magnitude are why it is sometimes best to look at the absolute and relative error measures for both the values of the independent variable and function value. If need be, even putting an extremely (relatively) small finite, constant value in the denominator of the relative calculation isn't entirely a bad thing in my mind (I remember seeing it in some numerical recipe books), but that's just a band-aid for robustness's sake that typically hides a more serious error.
This convergence is far different compared to the Newton-Raphson iterations because it has absolutely no knowledge of slope and the fixed-point iteration will converge to wherever the fixed-point is (forgive the minor tautology), assuming it does converge. Unfortunately, if I remember correctly, fixed-point convergence is only guaranteed if the function is continuous in some measure, and tan(x) is not; therefore, convergence is not guaranteed since those pesky poles get in the way.
The function it appears you want to find the root of is f(x) = 3*x*tan(x)-1. A fixed-point iterator of that function would be x = 1/(3*tan(x)) or x = 1/3*cot(x), which is looking for the intersection of 3*tan(x) and 1/x. However, due to point number (2), those iterators still behave badly since they are discontinuous.
A slightly different iterator x = atan(1/(3*x)) should behave a lot better since small values of x will produce a finite value because atan(x) is continuous along the whole real line. The only drawback is that the domain of x is limited to the interval (-pi/2,pi/2), but if it converges, I think the restriction is worth it.
Lastly, for any similar future coding endeavors, I do highly recommend #Adriaan's advice. If would like a sort of compromise between the styles, most of my iterative functions are written with a semantic variable notDone like this:
iter = 0;
iterMax = 1E4;
tol = 0.05;
notDone = 0.05 < er & iter < iterMax;
while notDone
%//your code
iter = iter + 1;
notDone = 0.05 < er & iter < iterMax;
end
You can add flags and all that jazz, but that format is what I frequently use.
I believe that the code below achieves what you are after using Newton's method for the convergence. Please leave a comment if I have missed something.
% find x: 3*x*tan(x) = 1
f = #(x) 3*x*tan(x)-1;
dfdx = #(x) 3*tan(x)+3*x*sec(x)^2;
tolerance = 0.05; % your value?
perturbation = 1e-2;
converged = 1;
x = 3.5;
f_x = f(x);
% Use Newton s method to find the root
count = 0;
err = 10*tolerance; % something bigger than tolerance to start
while (err >= tolerance)
count = count + 1;
if (count > 1e3)
converged = 0;
disp('Did not converge.');
break;
end
x0 = x;
dfdx_x = dfdx(x);
if (dfdx_x ~= 0)
% Avoid division by zero
f_x = f(x);
x = x - f_x/dfdx_x;
else
% Perturb x and go back to top of while loop
x = x + perturbation;
continue;
end
err = (abs((x - x0)/x))*100;
end
if (converged)
disp(['Converged to ' num2str(x,'%10.8e') ' in ' num2str(count) ...
' iterations.']);
end

Solving for the square root by Newton's Method

yinitial = x
y_n approaches sqrt(x) as n->infinity
If theres an x input and tol input. Aslong as the |y^2-x| > tol is true compute the following equation of y=0.5*(y + x/y). How would I create a while loop that will stop when |y^2-x| <= tol. So every time through the loop the y value changes. In order to get this answer--->
>>sqrtx = sqRoot(25,100)
sqrtx =
7.4615
I wrote this so far:
function [sqrtx] = sqrRoot(x,tol)
n = 0;
x=0;%initialized variables
if x >=tol %skips all remaining code
return
end
while x <=tol
%code repeated during each loop
x = x+1 %counting code
end
That formula is using a modified version of Newton's method to determine the square root. y_n is the previous iteration and y_{n+1} is the current iteration. You just need to keep two variables for each, then when the criteria of tolerance is satisfied, you return the current iteration's output. You also are incrementing the wrong value. It should be n, not x. You also aren't computing the tolerance properly... read the question more carefully. You take the current iteration's output, square it, subtract with the desired value x, take the absolute value and see if the output is less than the tolerance.
Also, you need to make sure the tolerance is small. Specifying the tolerance to be 100 will probably not allow the algorithm to iterate and give you the right answer. It may also be useful to see how long it took to converge to the right answer. As such, return n as a second output to your function:
function [sqrtx,n] = sqrRoot(x,tol) %// Change
%// Counts total number of iterations
n = 0;
%// Initialize the previous and current value to the input
sqrtx = x;
sqrtx_prev = x;
%// Until the tolerance has been met...
while abs(sqrtx^2 - x) > tol
%// Compute the next guess of the square root
sqrtx = 0.5*(sqrtx_prev + (x/sqrtx_prev));
%// Increment the counter
n = n + 1;
%// Set for next iteration
sqrtx_prev = sqrtx;
end
Now, when I run this code with x=25 and tol=1e-10, I get this:
>> [sqrtx, n] = sqrRoot(25, 1e-10)
sqrtx =
5
n =
7
The square root of 25 is 5... at least that's what I remember from maths class back in the day. It also took 7 iterations to converge. Not bad.
Yes, that is exactly what you are supposed to do: Iterate using the equation for y_{n+1} over and over again.
In your code you should have a loop like
while abs(y^2 - x) > tol
%// Calculate new y from the formula
end
Also note that tol should be small, as told in the other answer. The parameter tol actually tells you how inaccurate you want your solution to be. Normally you want more or less accurate solutions, so you set tol to a value near zero.
The correct way to solve this..
function [sqrtx] = sqRoot(x,tol)
sqrtx = x;%output = x
while abs((sqrtx.^2) - x) > tol %logic expression to test when it should
end
sqrtx = 0.5*((sqrtx) + (x/sqrtx)); %while condition prove true calculate
end
end

Solving differential equation for a single time in loop with matlab

I have a Mechanical system with following equation:
xdot = Ax+ Bu
I want to solve this equation in a loop because in every step I need to update u but solvers like ode45 or lsim solving the differential equation for a time interval.
for i = 1:10001
if x(i,:)>= Sin1 & x(i,:)<=Sout2
U(i,:) = Ueq - (K*(S/Alpha))
else
U(i,:) = Ueq - (K*S)
end
% [y(i,:),t,x(i+1,:)]=lsim(sys,U(i,:),(time=i/1000),x(i,:));
or %[t,x] = ode45(#(t,x)furuta(t,x,A,B,U),(time=i/1000),x)
end
Do I have another ways to solve this equation in a loop for a single time(Not single time step).
There are a number of methods for updating and storing data across function calls.
For the ODE suite, I've come to like what is called "closures" for doing that.
A closure is basically a nested function accessing or modifying a variable from its parent function.
The code below makes use of this feature by wrapping the right-hand side function passed to ode45 and the 'OutputFcn' in a parent function called odeClosure().
You'll notice that I am using logical-indexing instead of an if-statement.
Vectors in if-statements will only be true if all elements are true and vice-versa for false.
Therefore, I create a logical array and use it to make the denominator either 1 or Alpha depending on the signal value for each row of x/U.
The 'OutputFcn' storeU() is called after a successful time step by ode45.
The function grows the U storage array and updates it appropriately.
The array U will have the same number of columns as the number of solution points requested by tspan (12 in this made-up example).
If a successful full step leaps over any requested points, the function is called with intermediate all requested times and their associated solution values (so x may be rectangular and not just a vector); this is why I used bsxfun in storeU and not in rhs.
Example function:
function [sol,U] = odeClosure()
% Initilize
% N = 10 ;
A = [ 0,0,1.0000,0; 0,0,0,1.0000;0,1.3975,-3.7330,-0.0010;0,21.0605,-6.4748,-0.0149];
B = [0;0;0.6199;1.0752 ] ;
x0 = [11;11;0;0];
K = 100;
S = [-0.2930;4.5262;-0.5085;1.2232];
Alpha = 0.2 ;
Ueq = [0;-25.0509;6.3149;-4.5085];
U = Ueq;
Sin1 = [-0.0172;-4.0974;-0.0517;-0.2993];
Sout2 = [0.0172 ; 4.0974; 0.0517; 0.2993];
% Solve
options = odeset('OutputFcn', #(t,x,flag) storeU(t,x,flag));
sol = ode45(#(t,x) rhs(t,x),[0,0.01:0.01:0.10,5],x0,options);
function xdot = rhs(~,x)
between = (x >= Sin1) & (x <= Sout2);
uwork = Ueq - K*S./(1 + (Alpha-1).*between);
xdot = A*x + B.*uwork;
end
function status = storeU(t,x,flag)
if isempty(flag)
% grow array
nAdd = length(t) ;
iCol = size(U,2) + (1:nAdd);
U(:,iCol) = 0 ;
% update U
between = bsxfun(#ge,x,Sin1) & bsxfun(#le,x,Sout2);
U(:,iCol) = Ueq(:,ones(1,nAdd)) - K*S./(1 + (Alpha-1).*between);
end
status = 0;
end
end

Stopping criteria matlab iteration

I want to add an While-loop to my matlab-code so that it will stop when the iteration is good enough. With some kind of tolerance, eg. 1e-6.
This is my code now. So i need to add some kind of stopping criteria, i have tried several times now but it won't work... I appreciate all of ur help!
x(1)=1;
iterations = 0;
tolerance = 1e-6;
% Here should the while be....
for i=1:N
x(i+1)=x(i);
for j=1:N
x(i+1)=F(x(i),x(i+1));
end
end
iter= iter + 1;
Well, somehow you need to compute the 'error' you are doing in each iteration. In your case it would be something like this:
iter = 0;
tolerance = 1e-6;
error=1;
x=F(x);
while(error>tolerance)
x2=x;
x=F(x);
error = x-x2;
iter= iter + 1;
end
Note how at the beginning the error is set to 1 so we make sure it goes inside the loop. We also compute the first instance of x outside the loop. F(x) will be your function to evaluate, change it for whatever you need.
Inside the loop assign the old value of x to x2, then compute the new x and finally compute the error. Here I compute the error as x-x2 but you might need to compute this error in another way.
The loop will exit whenever the error is lower than the tolerance.