Calling different extent of randomness of arc4random in Swift? - swift

This might be rather stupid question. I would like to know if different nuances/extent of randomness would be possible using arc4random_uniform in Swift. Here's an example:
let number = arc4random_uniform(10) + 1
print(number)
In this case, a number will be printed randomly from 1 to 10. But is there a way that I can repeat the random result, 2 to 3 times? The result would be something like this:
1, 1, 6, 6, 6, 3, 3, 8, 8, 9, 9, 9 ...
// 1) Randomly selected and 2) repeated 2 to 3 times randomly.
Perhaps I might use two arc4random_uniform functions together, but cannot express them properly. Would be much appreciated if you could give me some suggestions. <3

In order to do this, you will need to generate two values: your random value and a repeatCount. Also, you'll need to remember both of those values so that you can repeat the value. You can do this with a custom class:
class RandomWithRepeats {
var range: ClosedRange<Int>
var repeatRange: ClosedRange<Int>
var repeatCount = 0
var value = 0
init(range: ClosedRange<Int>, repeatRange: ClosedRange<Int>) {
self.range = range
self.repeatRange = repeatRange
}
// generate a random number in a range
// Just use Int.random(in:) with Swift 4.2 and later
func random(in range: ClosedRange<Int>) -> Int {
return Int(arc4random_uniform(UInt32(range.upperBound - range.lowerBound + 1))) + range.lowerBound
}
func nextValue() -> Int {
// if repeatCount is 0, its time to generate a new value and
// a new repeatCount
if repeatCount == 0 {
// For Swift 4.2, just use Int.random(in:) instead
value = self.random(in: range)
repeatCount = self.random(in: repeatRange)
}
repeatCount -= 1
return value
}
}
Example:
let rand = RandomWithRepeats(range: 1...10, repeatRange: 2...3)
// generate 20 random repeated numbers
for _ in 1...20
{
print(rand.nextValue(), terminator: " ")
}
6 6 6 8 8 8 10 10 10 2 2 9 9 5 5 8 8 8 5 5

With regards to the nuances of random number generators: have a look at GKRandomSource.
What you're doing here is not really making something less random, or modifying the parameters in the random number generator. You're simply applying an operation (with one random parameter) to a collection of random integers.
extension Collection {
func duplicateItemsRandomly(range: CountableClosedRange<Int>) -> [Element] {
return self.reduce(into: [Element](), { (acc, element) in
let distance = UInt32(range.upperBound - range.lowerBound + 1)
let count = Int(arc4random_uniform(distance) + UInt32(range.lowerBound))
let result = Array.init(repeating: element, count: count)
acc.append(contentsOf: result)
})
}
}
let sequence = [1, 6, 3, 8, 9]
sequence.duplicateItemsRandomly(range: 2...3)
// [1, 1, 6, 6, 6, 3, 3, 3, 8, 8, 8, 9, 9, 9]
P.S: If you're writing this code in Swift 4.2, please use Int.random(in:).

I'd suggest a custom Sequence:
class RepeatingRandomSequence : Sequence {
let rangeLow, rangeSpan : UInt32
let repeatLow, repeatSpan : UInt32
init(range:Range<UInt32>, count:Range<UInt32>) {
rangeLow = range.lowerBound
rangeSpan = range.upperBound - range.lowerBound + 1
repeatLow = count.lowerBound
repeatSpan = count.upperBound - count.lowerBound + 1
}
func makeIterator() -> AnyIterator<UInt32> {
var count : UInt32 = 0
var value : UInt32 = 0
return AnyIterator {
if(count <= 0) {
count = arc4random_uniform(self.repeatSpan) + self.repeatLow
value = arc4random_uniform(self.rangeSpan) + self.rangeLow
}
defer { count = count - 1 }
return value
}
}
}
let sequence = RepeatingRandomSequence(range: 0..<10, count: 2..<3)
let randoms = sequence.makeIterator()
Note that the iterator, randoms now generates an endless sequence of random numbers using randoms.next() Since the sequence is endless, many things aren't particularly useful, like sort, map, etc. You could however use it like:
for value in random {
print(value)
if(value == 9) { // or any other termination condition
break
}
}
Or more conventionally, as:
(0..<10).forEach { _ in
print(String(describing: random.next()))
}

Related

Swift - Using stride with an Int Array

I want to add the numbers together and print every 4 elements, however i cannot wrap my head around using the stride function, if i am using the wrong approach please explain a better method
var numbers = [1,2,3,4,5,6,7,8,9,10,11,12,13]
func addNumbersByStride(){
var output = Stride...
//first output = 1+2+3+4 = 10
//second output = 5+6+7+8 = 26 and so on
print(output)
}
It seems you would like to use stride ...
let arr = [1,2,3,4,5,6,7,8,9,10,11,12,13]
let by = 4
let i = stride(from: arr.startIndex, to: arr.endIndex, by: by)
var j = i.makeIterator()
while let n = j.next() {
let e = min(n.advanced(by: by), arr.endIndex)
let sum = arr[n..<e].reduce(0, +)
print("summ of arr[\(n)..<\(e)]", sum)
}
prints
summ of arr[0..<4] 10
summ of arr[4..<8] 26
summ of arr[8..<12] 42
summ of arr[12..<13] 13
You can first split the array into chunks, and then add the chunks up:
extension Array {
// split array into chunks of n
func chunked(into size: Int) -> [[Element]] {
return stride(from: 0, to: count, by: size).map {
Array(self[$0 ..< Swift.min($0 + size, count)])
}
}
}
// add each chunk up:
let results = numbers.chunked(into: 4).map { $0.reduce(0, +) }
If you would like to discard the last sum if the length of the original array is not divisible by 4, you can add an if statement like this:
let results: [Int]
if numbers.count % 4 != 0 {
results = Array(numbers.chunked(into: 4).map { $0.reduce(0, +) }.dropLast())
} else {
results = numbers.chunked(into: 4).map { $0.reduce(0, +) }
}
This is quite a basic solution and maybe not so elegant. First calculate and print sum of every group of 4 elements
var sum = 0
var count = 0
for n in stride(from: 4, to: numbers.count, by: 4) {
sum = 0
for i in n-4..<n {
sum += numbers[i]
}
count = n
print(sum)
}
Then calculate the sum of the remaining elements
sum = 0
for n in count..<numbers.count {
sum += numbers[n]
}
print(sum)

Swift 4 - Accurately getting large factorials in playgrounds [duplicate]

I have written this function to return the factorial of a given number
func factorial(_ n: Int) -> Int {
if n == 0 {
return 1
}
else {
return n * factorial(n - 1)
}
}
print( factorial(20) ) // 2432902008176640000
Works as it should, as long the given number does not exceed 20, because then the result becomes too high!
How can I circumvent this limit and thus calculate the factorial of higher numbers?
I have searched around and found some bignum libraries for Swift. I'm doing this to learn and be familiar with Swift, therefore I want to figure this out on my own.
Here's an approach that will let you find very large factorials.
Represent large numbers as an array of digits. For instance 987 would be [9, 8, 7]. Multiplying that number by an integer n would require two steps.
Multiply each value in that array by n.
Perform a carry operation to return a result that is again single digits.
For example 987 * 2:
let arr = [9, 8, 7]
let arr2 = arr.map { $0 * 2 }
print(arr2) // [18, 16, 14]
Now, perform the carry operation. Starting at the one's digit, 14 is too big, so keep the 4 and carry the 1. Add the 1 to 16 to get 17.
[18, 17, 4]
Repeat with the ten's place:
[19, 7, 4]
And then with the hundred's place:
[1, 9, 7, 4]
Finally, for printing, you could convert this back to a string:
let arr = [1, 9, 7, 4]
print(arr.map(String.init).joined())
1974
Applying that technique, here is a carryAll function that performs the carry operation, and a factorial that uses it to calculate very large factorials:
func carryAll(_ arr: [Int]) -> [Int] {
var result = [Int]()
var carry = 0
for val in arr.reversed() {
let total = val + carry
let digit = total % 10
carry = total / 10
result.append(digit)
}
while carry > 0 {
let digit = carry % 10
carry = carry / 10
result.append(digit)
}
return result.reversed()
}
func factorial(_ n: Int) -> String {
var result = [1]
for i in 2...n {
result = result.map { $0 * i }
result = carryAll(result)
}
return result.map(String.init).joined()
}
print(factorial(1000))
402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901323829669944590997424504087073759918823627727188732519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955735432513185323958463075557409114262417474349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168747609675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909342221566832572080821333186116811553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860788386150279465955131156552036093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777939410970027753472000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
You can use this library:
BigInt
Install it using CocoaPods:
pod 'BigInt'
Then you can use it like this:
import BigInt
func factorial(_ n: Int) -> BigInt {
if n == 0 {
return 1
}
else {
return BigInt(n) * factorial(n - 1)
}
}
print( factorial(50) ) // 30414093201713378043612608166064768844377641568960512000000000000

Find closest longest combination

I have an array with integers [1, 2, 3, 7, 13, 11, 4] and an integer value 12. I need to return an array of a closest combination of sum of the integer values in the new array.
For example: [1, 2, 3, 7, 13, 11, 4] with value 12. The array that need to returned is [1, 2, 3, 4] because the sum of elements 1 + 2 + 3 + 4 <= 12. This is the longest array and prefered over [1, 7, 4] 1 + 7 + 4 = 12.
this solution works if you dont have repeated numbers in array.
var array = [1, 2, 3, 7, 13, 11, 4, -12, 22, 100]
print(array.sorted())
let value = 19
func close(array: [Int], value: Int) -> (Int , Int) {
let sortedArray = array.sorted()
var lastNumberBeforValue = sortedArray.first!
for (index,number) in sortedArray.enumerated() {
let sub = value - number
if sub > 0 {
lastNumberBeforValue = number
}
if sortedArray.contains(sub) && sub != number {
return (sub, number)
} else if index == sortedArray.count - 1 {
if sub < 0 {
let near = close(array: array, value: value - lastNumberBeforValue)
return (near.0, lastNumberBeforValue)
}
let near = close(array: array, value: sub)
return (near.0, number)
}
}
return (-1,-1)
}
let numbers = close(array: array, value: value)
print(numbers) //prints (4, 13)
This solution also finds the two Integers in an array which sum is closest to a given value:
let array = [1, 2, 3, 7, 13, 11, 4]
let value = 5
var difference = Int.max
var result = [Int(), Int()]
for firstInt in array {
for secondInt in array {
let tempDifference = abs((firstInt + secondInt) - value)
if tempDifference < difference {
difference = tempDifference
result[0] = firstInt
result[1] = secondInt
}
}
}
Or a solution that doesn't allow multiple use of the same value:
for (firstIndex, firstInt) in array.enumerated() {
for (secondIndex, secondInt) in array.enumerated() {
guard firstInt != secondInt else { break }
let tempDifference = abs((firstInt + secondInt) - value)
if tempDifference < difference {
difference = tempDifference
result[0] = firstInt
result[1] = secondInt
}
}
}
You can keep on nesting for-loops and guarding for multiple use of same index, if you want longer result arrays. Finally you can take the valid array with the largest result.count. This is not a vary nice solution though, since it computationally heavy, and requires the array to have a static length.
I'm not necessary good with algorithms but I would do it like that :
Since your rule is <= 5 you can sort your array : [1, 2, 3, 7, 13, 11, 4] => [1, 2, 3, 4, 7, 11, 13]
Then, as you don't need integer > 5 you can split your array in 2 parts and take only the first one : [1, 2, 3, 4]
From there you have to add 4 + 3 and match with your value. If it doesn't work do 4 + 2, then 4 + 1. If it's still > 5, loop with 3,2 ; 3,1 ; etc. I did something like this in a Swift way :
// Init
let array = [1, 2, 3, 7, 13, 11, 4]
let value = 5
let sortedArray = array.sorted()
let usefulArray = sortedArray.filter() {$0 < value}
var hasCombination = false
var currentIndex = usefulArray.count - 1
var indexForSum = currentIndex - 1
// Process
if currentIndex > 0 {
hasCombination = true
while usefulArray[currentIndex] + usefulArray[indexForSum] > value {
indexForSum -= 1
if indexForSum < 0 {
currentIndex -= 1
indexForSum = currentIndex - 1
}
if currentIndex == 0 {
hasCombination = false
break
}
}
}
// Result
if hasCombination {
let combination = [usefulArray[indexForSum], usefulArray[currentIndex]]
} else {
print("No combination")
}
I guess it works, tell me if it doesn't !

Simple Swift Fibonacci program crashing (Project Euler 2)

I am trying to solve the second problem on Project Euler. The problem is as follows:
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
I think I've written a solution, but when I try to run my code it crashes my Swift playground and gives me this error message:
Playground execution aborted: Execution was interrupted, reason: EXC_BAD_INSTRUCTION (code=EXC_I386_INVOP, subcode=0x0)
var prev = 0
var next = 1
var num = 0
var sum = 0
for var i = 1; i < 400; i++ {
num = prev + next
if next % 2 == 0 {
sum += next
}
prev = next
next = num
}
print(sum)
The weird thing is, if I set the counter on my loop to less than 93, it works fine. Explicitly setting the variable names to Double does not help. Anyone know what's going on here?
There is nothing weird about this at all. Do you know how large the 400 fibonacci number is?
176023680645013966468226945392411250770384383304492191886725992896575345044216019675
Swift Int64 or UInt64 simply cannot handle that large of a number. The later can go up to 18446744073709551615 at max - not even close.
If you change your variables to be doubles it works but will be inaccurate:
var prev : Double = 0
var next : Double = 1
var num : Double = 0
var sum : Double = 0
will yield
2.84812298108489e+83
which is kind of close to the actual value of
1.76e+83
Luckily you do not need to get values that big. I would recommend not writing a for loop but a while loop that calculates the next fibonacci number until the break condition is met whose values do not exceed four million.
The Fibonacci numbers become very large quickly. To compute large Fibonacci numbers, you need to implement some kind of BigNum. Here is a version the makes a BigNum that is implemented internally as an array of digits. For example, 12345 is implemented internally as [1, 2, 3, 4, 5]. This makes it easy to represent arbitrarily large numbers.
Addition is implemented by making the two arrays the same size, then map is used to add the elements, finally the carryAll function restores the array to single digits.
For example 12345 + 67:
[1, 2, 3, 4, 5] + [6, 7] // numbers represented as arrays
[1, 2, 3, 4, 5] + [0, 0, 0, 6, 7] // pad the shorter array with 0's
[1, 2, 3, 10, 12] // add the arrays element-wise
[1, 2, 4, 1, 2] // perform carry operation
Here is the implementation of BigNum. It is also CustomStringConvertible which makes it possible to print the result as a String.
struct BigNum: CustomStringConvertible {
var arr = [Int]()
// Return BigNum value as a String so it can be printed
var description: String { return arr.map(String.init).joined() }
init(_ arr: [Int]) {
self.arr = carryAll(arr)
}
// Allow BigNum to be initialized with an `Int`
init(_ i: Int = 0) {
self.init([i])
}
// Perform the carry operation to restore the array to single
// digits
func carryAll(_ arr: [Int]) -> [Int] {
var result = [Int]()
var carry = 0
for val in arr.reversed() {
let total = val + carry
let digit = total % 10
carry = total / 10
result.append(digit)
}
while carry > 0 {
let digit = carry % 10
carry = carry / 10
result.append(digit)
}
return result.reversed()
}
// Enable two BigNums to be added with +
static func +(_ lhs: BigNum, _ rhs: BigNum) -> BigNum {
var arr1 = lhs.arr
var arr2 = rhs.arr
let diff = arr1.count - arr2.count
// Pad the arrays to the same length
if diff < 0 {
arr1 = Array(repeating: 0, count: -diff) + arr1
} else if diff > 0 {
arr2 = Array(repeating: 0, count: diff) + arr2
}
return BigNum(zip(arr1, arr2).map { $0 + $1 })
}
}
// This function is based upon this question:
// https://stackoverflow.com/q/52975875/1630618
func fibonacci(to n: Int) {
guard n >= 2 else { return }
var array = [BigNum(0), BigNum(1)]
for i in 2...n {
array.append(BigNum())
array[i] = array[i - 1] + array[i - 2]
print(array[i])
}
}
fibonacci(to: 400)
Output:
1
2
3
5
8
...
67235063181538321178464953103361505925388677826679492786974790147181418684399715449
108788617463475645289761992289049744844995705477812699099751202749393926359816304226
176023680645013966468226945392411250770384383304492191886725992896575345044216019675

Swift - Turn Int to binary representations

I receive an Int from my server which I’d like to explode in to an array of bit masks. So for example, if my server gives me the number 3, we get two values, a binary 1 and a binary 2.
How do I do this in Swift?
You could use:
let number = 3
//radix: 2 is binary, if you wanted hex you could do radix: 16
let str = String(number, radix: 2)
println(str)
prints "11"
let number = 79
//radix: 2 is binary, if you wanted hex you could do radix: 16
let str = String(number, radix: 16)
println(str)
prints "4f"
I am not aware of any nice built-in way, but you could use this:
var i = 3
let a = 0..<8
var b = a.map { Int(i & (1 << $0)) }
// b = [1, 2, 0, 0, 0, 0, 0, 0]
Here is a straightforward implementation:
func intToMasks(var n: Int) -> [Int] {
var masks = [Int]()
var mask = 1
while n > 0 {
if n & mask > 0 {
masks.append(mask)
n -= mask
}
mask <<= 1
}
return masks
}
println(intToMasks(3)) // prints "[1,2]"
println(intToMasks(1000)) // prints "[8,32,64,128,256,512]"
public extension UnsignedInteger {
/// The digits that make up this number.
/// - Parameter radix: The base the result will use.
func digits(radix: Self = 10) -> [Self] {
sequence(state: self) { quotient in
guard quotient > 0
else { return nil }
let division = quotient.quotientAndRemainder(dividingBy: radix)
quotient = division.quotient
return division.remainder
}
.reversed()
}
}
let digits = (6 as UInt).digits(radix: 0b10) // [1, 1, 0]
digits.reversed().enumerated().map { $1 << $0 } // [0, 2, 4]
Reverse the result too, if you need it.