Algorithm and Data Structure - Queue - queue

The 2 queueing strategies are as follows:
1. A single queue. Each server will take the next customer as soon as the server becomes available.
2. A queue for each server. Customers will choose the server with the shortest queue on arrival and not allowed to jump queue thereafter.
Can someone explain the 2nd queue? It means the same thing as the first queue just that the customer will choose the shortest one(which means will faster process the customer) to queue. Where can I get more information of this queue or if there is any sample code?

Image representing the two queuing strategies
It has been found out that the single queue - multiple servers approach is more efficient than the multiple queues approach. In this approach, the waiting time is almost equally distributed among all the customers, even though the processing time for each customer is different.
Here is a link to a detailed analysis and mathematical proof of the same.
Comparison Between Single and Multiple Queues

Related

Quarkus Scheduled Records Processing mechanism Best Practice

What is the best practice or way to process the records from DB in scheduled.
Situation:
A Microservice based on Quarkus - responsible for sending a communication to customers.
DB Table Having Customers Records (100000 customers)
Microservice is running on multiple nodes (4 nodes)
Expectation:
There should be a scheduler that runs every 5 sec
Fetches the records from DB where employee status = pending
Should be Multithreaded architecture.
Send email to employee email.
Problem 1:
The same scheduler running on multiple nodes picks the same records and process How can we avoid this?
Problem 2:
Scheduler pics (100 records and processing it) and takes more than 5 seconds and scheduler run again pics few same records. How can we avoid that:
If you are planning to run your microservices on kubernetes I would sugest to use an external components as a scheduler and let this component distribute the work over your microservices using messages or HTTP invocations.
As responses to your questions here we go:
You can use some locking strategy or "reserve" each row including a field that indicates that your record is being processed and excluding all records containing this fields from your query. By this means when the scheduler fires it will read a set of rows not reserved and use a multithreading approach to process the records, by using a locking strategy (pesimits or optimist) you can prevent other records from marking the same row as reserved for them to be processed. After that the thread thas was able to commit the reserve process the records and updates the state or releases the "reserve" so other workers can work on the record if its needed.
You can always instruct your scheduler to do no execute if there is still an execution going.
#Scheduled(identity = "ProcessUpdateScheduler", every = "2s", concurrentExecution = Scheduled.ConcurrentExecution.SKIP)
You mainly have two approaches among other possible ones:
Pulling (Distribute mining or work distribution): Each instance of the microservice pick a random pending row and mark this row as "processing" commiting the transaction, if its able to commit then this instance holds the right to process this record continuing with its execution, if not it tries to retrieve a different row or just exists waiting for the next invocation. This approach scales horizontally because adding more workers will mean increasing your processing throughput.
Pushing (central distribution, distributed processing). You have two kinds of components: First the "Distributor" which is executed with the scheduler and is responsible for picking rows to be processed and marking then as "pending processing", this rows will be forward via a messaging system or HTTP call to the "Processor". The Processor component recieves as input a record and is responsible of processing this record completely or releasing the hold ("procesing pending") state.
Choouse the best suited for your scenario, if you go for the second option, you can have one or more distributors if its necessary, but in order to increment your processing throughput you only need to scale the "Processor" workers

Tracking an expected set of Kafka events

Say I have N cities and each will report their temperature for the hour (H) by producing Kafka events. I have a complex model I want to run but want to ensure it doesn't attempt to kick-off before all N are read.
Say they are being produced in batches, I understand that to ensure at-least-once consumption, if a consumer fails mid-batch then it will pick up at the front of the batch. I have built this into my model to count by unique Cities (and if a city is sent multiple times it will overwrite existing records).
My current plan is to set it up as follows:
An application creates an initial event which says "Expect these N cities to report for H o'clock".
The events are persisted (in db, Redis, etc) by another application. After writing, it produces an event which states how many unique cities have been reported in total so far for H.
Some process matches the initial "Expect N" events with "N Written" events. It alerts the rest of the system that the data set for H is ready for creating the model when they are equal.
Does this problem have a name and are there common patterns or libraries available to manage it?
Does the solution as outlined have glaring holes or overcomplicate the issue?
What you're describing sounds like an Aggregator, described by Gregor Hohpe and Bobby Woolf's "Enterprise Integration Patterns" as:
a special Filter that receives a stream of messages and identifies messages that are correlated. Once a complete set of messages has been received [...], the Aggregator collects information from each correlated message and publishes a single, aggregated message to the output channel for further processing.
This could be done on top of Kafka Streams, using its built-in aggregation, or with a stateful service like you suggested.
One other suggestion -- designing processes like this with event-driven choreography can be tricky. I have seen strong engineering teams fail to deliver similar solutions due to diving into the deep end without first learning to swim. If your scale demands it and your organization is already primed for event-driven distributed architecture, then go for it, but if not, consider an orchestration-based alternative (for example, AWS Step Functions, Airflow, or another workflow orchestration tool). These are much easier to reason about and debug.

Implementing sagas with Kafka

I am using Kafka for Event Sourcing and I am interested in implementing sagas using Kafka.
Any best practices on how to do this? The Commander pattern mentioned here seems close to the architecture I am trying to build but sagas are not mentioned anywhere in the presentation.
This talk from this year's DDD eXchange is the best resource I came across wrt Process Manager/Saga pattern in event-driven/CQRS systems:
https://skillsmatter.com/skillscasts/9853-long-running-processes-in-ddd
(requires registering for a free account to view)
The demo shown there lives on github: https://github.com/flowing/flowing-retail
I've given it a spin and I quite like it. I do recommend watching the video first to set the stage.
Although the approach shown is message-bus agnostic, the demo uses Kafka for the Process Manager to send commands to and listen to events from other bounded contexts. It does not use Kafka Streams but I don't see why it couldn't be plugged into a Kafka Streams topology and become part of the broader architecture like the one depicted in the Commander presentation you referenced.
I hope to investigate this further for our own needs, so please feel free to start a thread on the Kafka users mailing list, that's a good place to collaborate on such patterns.
Hope that helps :-)
I would like to add something here about sagas and Kafka.
In general
In general Kafka is a tad different than a normal queue. It's especially good in scaling. And this actually can cause some complications.
One of the means to accomplish scaling, Kafka uses partitioning of the data stream. Data is placed in partitions, which can be consumed at its own rate, independent of the other partitions of the same topic. Here is some info on it: how-choose-number-topics-partitions-kafka-cluster. I'll come back on why this is important.
The most common ways to ensure the order within Kafka are:
Use 1 partition for the topic
Use a partition message key to "assign" the message to a topic
In both scenarios your chronologically dependent messages need to stream through the same topic.
Also, as #pranjal thakur points out, make sure the delivery method is set to "exactly once", which has a performance impact but ensures you will not receive the messages multiple times.
The caveat
Now, here's the caveat: When changing the amount of partitions the message distribution over the partitions (when using a key) will be changed as well.
In normal conditions this can be handled easily. But if you have a high traffic situation, the migration toward a different number of partitions can result in a moment in time in which a saga-"flow" is handled over multiple partitions and the order is not guaranteed at that point.
It's up to you whether this will be an issue in your scenario.
Here are some questions you can ask to determine if this applies to your system:
What will happen if you somehow need to migrate/copy data to a new system, using Kafka?(high traffic scenario)
Can you send your data to 1 topic?
What will happen after a temporary outage of your saga service? (low availability scenario/high traffic scenario)
What will happen when you need to replay a bunch of messages?(high traffic scenario)
What will happen if we need to increase the partitions?(high traffic scenario/outage & recovery scenario)
The alternative
If you're thinking of setting up a saga, based on steps, like a state machine, I would challenge you to rethink your design a bit.
I'll give an example:
Lets consider a booking-a-hotel-room process:
Simplified, it might consist of the following steps:
Handle room reserved (incoming event)
Handle room payed (incoming event)
Send acknowledgement of the booking (after payed and some processing)
Now, if your saga is not able to handle the payment if the reservation hasn't come in yet, then you are relying on the order of events.
In this case you should ask yourself: when will this break?
If you conclude you want to avoid the chronological dependency; consider a system without a saga, or a saga which does not depend on the order of events - i.e.: accepting all messages, even when it's not their turn yet in the process.
Some examples:
aggregators
Modeled as business process: parallel gateways (parallel process flows)
Do note in such a setup it is even more crucial that every action has got an implemented compensating action (rollback action).
I know this is often hard to accomplish; but, if you start small, you might start to like it :-)

How can (messaging) queue be scalable?

I frequently see queues in software architecture, especially those called "scalable" with prominent representative of Actor from Akka.io multi-actor platform. However, how can queue be scalable, if we have to synchronize placing messages in queue (and therefore operate in single thread vs multi thread) and again synchronize taking out messages from queue (to assure, that message it taken exactly once)? It get's even more complicated, when those messages can change state of (actor) system - in this case even after taking out message from queue, it cannot be load balanced, but still processed in single thread.
Is it correct, that putting messages in queue must be synchronized?
Is it correct, that putting messages out of queue must be synchronized?
If 1 or 2 is correct, then how is queue scalable? Doesn't synchronization to single thread immediately create bottleneck?
How can (actor) system be scalable, if it is statefull?
Does statefull actor/bean mean, that I have to process messages in single thread and in order?
Does statefullness mean, that I have to have single copy of bean/actor per entire system?
If 6 is false, then how do I share this state between instances?
When I am trying to connect my new P2P node to netowrk, I believe I have to have some "server" that will tell me, who are other peers, is that correct? When I am trying to download torrent, I have to connect to tracker - if there is "server" then we do we call it P2P? If this tracker will go down, then I cannot connect to peers, is that correct?
Is synchronization and statefullness destroying scalability?
Is it correct, that putting messages in queue must be synchronized?
Is it correct, that putting messages out of queue must be synchronized?
No.
Assuming we're talking about the synchronized java keyword then that is a reenetrant mutual exclusion lock on the object. Even multiple threads accessing that lock can be fast as long as contention is low. And each object has its own lock so there are many locks, each which only needs to be taken for a short time, i.e. it is fine-grained locking.
But even if it did, queues need not be implemented via mutual exclusion locks. Lock-free and even wait-free queue data structures exist. Which means the mere presence of locks does not automatically imply single-threaded execution.
The rest of your questions should be asked separately because they are not about message queuing.
Of course you are correct in that a single queue is not scalable. The point of the Actor Model is that you can have millions of Actors and therefore distribute the load over millions of queues—if you have so many cores in your cluster. Always remember what Carl Hewitt said:
One Actor is no actor. Actors come in systems.
Each single actor is a fully sequential and single-threaded unit of computation. The whole model is constructed such that it is perfectly suited to describe distribution, though; this means that you create as many actors as you need.

RabbitMQ - Message order of delivery

I need to choose a new Queue broker for my new project.
This time I need a scalable queue that supports pub/sub, and keeping message ordering is a must.
I read Alexis comment: He writes:
"Indeed, we think RabbitMQ provides stronger ordering than Kafka"
I read the message ordering section in rabbitmq docs:
"Messages can be returned to the queue using AMQP methods that feature
a requeue
parameter (basic.recover, basic.reject and basic.nack), or due to a channel
closing while holding unacknowledged messages...With release 2.7.0 and later
it is still possible for individual consumers to observe messages out of
order if the queue has multiple subscribers. This is due to the actions of
other subscribers who may requeue messages. From the perspective of the queue
the messages are always held in the publication order."
If I need to handle messages by their order, I can only use rabbitMQ with an exclusive queue to each consumer?
Is RabbitMQ still considered a good solution for ordered message queuing?
Well, let's take a closer look at the scenario you are describing above. I think it's important to paste the documentation immediately prior to the snippet in your question to provide context:
Section 4.7 of the AMQP 0-9-1 core specification explains the
conditions under which ordering is guaranteed: messages published in
one channel, passing through one exchange and one queue and one
outgoing channel will be received in the same order that they were
sent. RabbitMQ offers stronger guarantees since release 2.7.0.
Messages can be returned to the queue using AMQP methods that feature
a requeue parameter (basic.recover, basic.reject and basic.nack), or
due to a channel closing while holding unacknowledged messages. Any of
these scenarios caused messages to be requeued at the back of the
queue for RabbitMQ releases earlier than 2.7.0. From RabbitMQ release
2.7.0, messages are always held in the queue in publication order, even in the presence of requeueing or channel closure. (emphasis added)
So, it is clear that RabbitMQ, from 2.7.0 onward, is making a rather drastic improvement over the original AMQP specification with regard to message ordering.
With multiple (parallel) consumers, order of processing cannot be guaranteed.
The third paragraph (pasted in the question) goes on to give a disclaimer, which I will paraphrase: "if you have multiple processors in the queue, there is no longer a guarantee that messages will be processed in order." All they are saying here is that RabbitMQ cannot defy the laws of mathematics.
Consider a line of customers at a bank. This particular bank prides itself on helping customers in the order they came into the bank. Customers line up in a queue, and are served by the next of 3 available tellers.
This morning, it so happened that all three tellers became available at the same time, and the next 3 customers approached. Suddenly, the first of the three tellers became violently ill, and could not finish serving the first customer in the line. By the time this happened, teller 2 had finished with customer 2 and teller 3 had already begun to serve customer 3.
Now, one of two things can happen. (1) The first customer in line can go back to the head of the line or (2) the first customer can pre-empt the third customer, causing that teller to stop working on the third customer and start working on the first. This type of pre-emption logic is not supported by RabbitMQ, nor any other message broker that I'm aware of. In either case, the first customer actually does not end up getting helped first - the second customer does, being lucky enough to get a good, fast teller off the bat. The only way to guarantee customers are helped in order is to have one teller helping customers one at a time, which will cause major customer service issues for the bank.
It is not possible to ensure that messages get handled in order in every possible case, given that you have multiple consumers. It doesn't matter if you have multiple queues, multiple exclusive consumers, different brokers, etc. - there is no way to guarantee a priori that messages are answered in order with multiple consumers. But RabbitMQ will make a best-effort.
Message ordering is preserved in Kafka, but only within partitions rather than globally. If your data need both global ordering and partitions, this does make things difficult. However, if you just need to make sure that all of the same events for the same user, etc... end up in the same partition so that they are properly ordered, you may do so. The producer is in charge of the partition that they write to, so if you are able to logically partition your data this may be preferable.
I think there are two things in this question which are not similar, consumption order and processing order.
Message Queues can -to a degree- give you a guarantee that messages will get consumed in order, they can't, however, give you any guarantees on the order of their processing.
The main difference here is that there are some aspects of message processing which cannot be determined at consumption time, for example:
As mentioned a consumer can fail while processing, here the message's consumption order was correct, however, the consumer failed to process it correctly, which will make it go back to the queue. At this point the consumption order is intact, but the processing order is not.
If by "processing" we mean that the message is now discarded and finished processing completely, then consider the case when your processing time is not linear, in other words processing one message takes longer than the other. For example, if message 3 takes longer to process than usual, then messages 4 and 5 might get consumed and finish processing before message 3 does.
So even if you managed to get the message back to the front of the queue (which by the way violates the consumption order) you still cannot guarantee they will also be processed in order.
If you want to process the messages in order:
Have only 1 consumer instance at all times, or a main consumer and several stand-by consumers.
Or don't use a messaging queue and do the processing in a synchronous blocking method, which might sound bad but in many cases and business requirements it is completely valid and sometimes even mission critical.
There are proper ways to guarantuee the order of messages within RabbitMQ subscriptions.
If you use multiple consumers, they will process the message using a shared ExecutorService. See also ConnectionFactory.setSharedExecutor(...). You could set a Executors.newSingleThreadExecutor().
If you use one Consumer with a single queue, you can bind this queue using multiple bindingKeys (they may have wildcards). The messages will be placed into the queue in the same order that they were received by the message broker.
For example you have a single publisher that publishes messages where the order is important:
try (Connection connection2 = factory.newConnection();
Channel channel2 = connection.createChannel()) {
// publish messages alternating to two different topics
for (int i = 0; i < messageCount; i++) {
final String routingKey = i % 2 == 0 ? routingEven : routingOdd;
channel2.basicPublish(exchange, routingKey, null, ("Hello" + i).getBytes(UTF_8));
}
}
You now might want to receive messages from both topics in a queue in the same order that they were published:
// declare a queue for the consumer
final String queueName = channel.queueDeclare().getQueue();
// we bind to queue with the two different routingKeys
final String routingEven = "even";
final String routingOdd = "odd";
channel.queueBind(queueName, exchange, routingEven);
channel.queueBind(queueName, exchange, routingOdd);
channel.basicConsume(queueName, true, new DefaultConsumer(channel) { ... });
The Consumer will now receive the messages in the order that they were published, regardless of the fact that you used different topics.
There are some good 5-Minute Tutorials in the RabbitMQ documentation that might be helpful:
https://www.rabbitmq.com/tutorials/tutorial-five-java.html