Getting the top 2 amount with the most recent dates - date

My original code was taking all transactions in the last 12 months and compare the top two highest single transaction.
If the highest single gift within that time period is more than two times greater than the 2nd largest single transaction, take the 2nd highest single gift. If the #1 single highest gift is not two times greater, it is used.
I found I need to use the most recent dates with the top 2 amount with the above rules. If I use the last 12 months, I'm not getting all the amount value I need.
How do I change the where statement to get the most recent dates instead of the last 12 months from the current current date.
Input Values
account number, date, and transaction amount.
7428, 01262018, 2
7428, 12302018, 5
16988 02142016, 100
16988 01152016, 25
22450 04191971, 8
22450 08291971, 10
Results
AccountNumber Number Amount
------------------------------
7428 2 5.00
16988 2 25.00
22450 2 10.00
26997 2 10.00
27316 2 25.00
27365 2 25.00
28620 2 10.00
28951 2 10.00
29905 2 5.00
Code:
DECLARE #start_date date
DECLARE #end_date date
SET #start_date = DATEADD(YEAR, -1, GETDATE())
SET #end_date = GETDATE()
SELECT
AccountNumber,
COUNT(amount) as Number,
CASE
WHEN MAX(CASE WHEN row_num = 1 THEN amount END) > MAX(CASE WHEN row_num = 2 THEN amount END) * 2
THEN MAX(CASE WHEN row_num = 2 THEN amount END)
ELSE MAX(CASE WHEN row_num = 1 THEN amount END)
END AS Amount
FROM
(SELECT
*,
ROW_NUMBER() OVER(PARTITION BY AccountNumber ORDER BY amount DESC) AS row_num
FROM
dbo.[T01_TransactionMaster]
WHERE
date >= #start_date AND date < #end_date) AS tt
WHERE
row_num IN (1, 2)
AND amount > 0
-- AND AccountNumber = 301692
GROUP BY
AccountNumber

Related

How to calculate the number of messages within 10 seconds before the previous one?

I have a table with messages and I need to find chats where were two or more messages in period of 10 seconds. table
id message_id time
1 1 2021.11.10 13:09:00
1 2 2021.11.10 13:09:01
1 3 2021.11.10 13:09:50
2 1 2021.11.10 15:18:00
2 2 2021.11.10 15:20:00
3 1 2021.11.12 15:00:00
3 2 2021.11.12 15:10:00
3 2 2021.11.12 15:10:10
So the result looks like
id
1
3
I can't come up with the idea how to group by a period or maybe it can be done other way?
select id
from t
group by id, ?
having count(message_id) > 1
You can join the table with itself, matching them on the chat id and your timeframe.
create table messages (chat_id integer,message_id integer,"time" timestamp);
insert into messages values
(1,1,'2021.11.10 13:09:00'),
(1,2,'2021.11.10 13:09:01'),
(1,3,'2021.11.10 13:09:50'),
(2,1,'2021.11.10 15:18:00'),
(2,2,'2021.11.10 15:20:00'),
(3,1,'2021.11.12 15:00:00'),
(3,2,'2021.11.12 15:10:00'),
(3,2,'2021.11.12 15:10:10');
select target_chat,
target_message,
count(*) "number of messages preceding by no more than 10 seconds"
from
(select t1.chat_id target_chat,
t1.message_id target_message,
t1.time,
t2.chat_id,
t2.message_id,
t2.time
from messages t1
inner join messages t2
on t1.chat_id=t2.chat_id
and t1.message_id<>t2.message_id
and (t2.time<=t1.time-'10 seconds'::interval and t2.time<=t1.time)) a
group by 1,2;
-- target_chat | target_message | number of messages preceding by no more than 10 seconds
---------------+----------------+---------------------------------------------------------
-- 1 | 3 | 2
-- 2 | 2 | 1
-- 3 | 2 | 2
--(3 rows)
From that you can select the records with your desired number of preceding messages.
this is a simple query that finds every previous value that is included in our interval
select id from test_table t where
t.time + interval '10 second' >=
(select time from test_table where id=t.id and time>t.time limit 1)
group by id;
results
id
----
1
3
To find rows within an period of time, you can tipically use a window function which avoids a self join on the table :
SELECT id, count(*) OVER (ORDER BY time RANGE BETWEEN CURRENT ROW AND '10 minutes' FOLLOWING)
FROM t
GROUP BY id
Then you can use this query as a sub-query if you only want the id with count(*) > 1 :
SELECT DISTINCT ON (l.id) l.id
FROM
( SELECT id, count(*) OVER (ORDER BY time RANGE BETWEEN CURRENT ROW AND '10 minutes' FOLLOWING) AS ct
FROM t
GROUP BY id
) AS l
WHERE l.ct > 1 ;

Cohort Analysis with RedShift by Month

I am trying to build a cohort analysis for monthly retention but experiencing challenge getting the Month Number column right. The month number is supposed to return month(s) user transacted i.e 0 for registration month, 1 for the first month after registration month, 2 for the second month until the last month but currently, it returns negative month numbers in some cells.
It should be like this table:
cohort_month total_users month_number percentage
---------- ----------- -- ------------ ---------
January 100 0 40
January 341 1 90
January 115 2 90
February 103 0 73
February 100 1 40
March 90 0 90
Here is the SQL:
with cohort_items as (
select
extract(month from insert_date) as cohort_month,
msisdn as user_id
from mfscore.t_um_user_detail where extract(year from insert_date)=2020
order by 1, 2
),
user_activities as (
select
A.sender_msisdn,
extract(month from A.insert_date)-C.cohort_month as month_number
from mfscore.t_wm_transaction_logs A
left join cohort_items C ON A.sender_msisdn = C.user_id
where extract(year from A.insert_date)=2020
group by 1, 2
),
cohort_size as (
select cohort_month, count(1) as num_users
from cohort_items
group by 1
order by 1
),
B as (
select
C.cohort_month,
A.month_number,
count(1) as num_users
from user_activities A
left join cohort_items C ON A.sender_msisdn = C.user_id
group by 1, 2
)
select
B.cohort_month,
S.num_users as total_users,
B.month_number,
B.num_users * 100 / S.num_users as percentage
from B
left join cohort_size S ON B.cohort_month = S.cohort_month
where B.cohort_month IS NOT NULL
order by 1, 3
I think the RANK window function is the right solution. So the idea is to assigne a rank to months of user activities for each user, order by year and month.
Something like:
WITH activity_per_user AS (
SELECT
user_id,
event_date,
RANK() OVER (PARTITION BY user_id ORDER BY DATE_PART('year', event_date) , DATE_PART('month', event_date) ASC) AS month_number
FROM user_activities_table
)
RANK number starts from 1, so you may want to substract 1.
Then, you can group by user_id and month_number to get the number of interactions for each user per month from the subscription (adapt to your use case accordingly).
SELECT
user_id,
month_number,
COUNT(1) AS n_interactions
FROM activity_per_user
GROUP BY 1, 2
Here is the documentation:
https://docs.aws.amazon.com/redshift/latest/dg/r_WF_RANK.html

Postgresql : Average over a limit of Date with group by

I have a table like this
item_id date number
1 2000-01-01 100
1 2003-03-08 50
1 2004-04-21 10
1 2004-12-11 10
1 2010-03-03 10
2 2000-06-29 1
2 2002-05-22 2
2 2002-07-06 3
2 2008-10-20 4
I'm trying to get the average for each uniq Item_id over the last 3 dates.
It's difficult because there are missing date in between so a range of hardcoded dates doesn't always work.
I expect a result like :
item_id MyAverage
1 10
2 3
I don't really know how to do this. Currently i manage to do it for one item but i have trouble extending it to multiples items :
SELECT AVG(MyAverage.number) FROM (
SELECT date,number
FROM item_list
where item_id = 1
ORDER BY date DESC limit 3
) as MyAverage;
My main problem is with generalising the "DESC limit 3" over a group by id.
attempt :
SELECT item_id,AVG(MyAverage.number)
FROM (
SELECT item_id,date,number
FROM item_list
ORDER BY date DESC limit 3) as MyAverage
GROUP BY item_id;
The limit is messing things up there.
I have made it " work " using between date and date but it's not working as i want because i need a limit and not an hardcoded date..
Can anybody help
You can use row_number() to assign 1 to 3 for the records with the last date for an ID an then filter for that.
SELECT x.item_id,
avg(x.number)
FROM (SELECT il.item_id,
il.number,
row_number() OVER (PARTITION BY il.item_id
ORDER BY il.date DESC) rn
FROM item_list il) x
WHERE x.rn BETWEEN 1 AND 3
GROUP BY x.item_id;

SQL select converting transaction rows to columns

I have a table that lists all transactions as follows:
ID Account Date Amount
---------------------------
1 2 02/01/2015 30
2 5 05/01/2015 25
3 2 05/01/2015 12
4 2 07/01/2015 42
5 5 10/012015 19
6 2 11/01/2015 58
7 3 15/01/2015 36
Would like to write a select statement that will list only the last 3 transactions of each account, as follows please.
Account Date1 Amount Date2 Amount Date3 Amount
---------------------------------------------------------------
2 11/01/2015 58 07/01/2015 42 05/01/2015 12
3 15/01/2015 36
5 10/01/2015 19 05/01/2015 25
Thank you for any advice
You can use the row_number() function in a derived table to partition the data by account, and give each date within the partition a number, and then do a conditional aggregation over the rows with the top 3 numbers, grouped by account:
select
account,
date1 = max(case when rn = 1 then date end),
amount = max(case when rn = 1 then amount end),
date2 = max(case when rn = 2 then date end),
amount = max(case when rn = 2 then amount end),
date3 = max(case when rn = 3 then date end),
amount = max(case when rn = 3 then amount end)
from (
select *, rn = row_number() over (partition by account order by date desc)
from your_table
) a
where rn <= 3
group by account
Sample SQL Fiddle

T-SQL - Data Islands and Gaps - How do I summarise transactional data by month?

I'm trying to query some transactional data to establish the CurrentProductionHours value for each Report at the end of each month.
Providing there has been a transaction for each report in each month, that's pretty straight-forward... I can use something along the lines of the code below to partition transactions by month and then pick out the rows where TransactionByMonth = 1 (effectively, the last transaction for each report each month).
SELECT
ReportId,
TransactionId,
CurrentProductionHours,
ROW_NUMBER() OVER (PARTITION BY [ReportId], [CalendarYear], [MonthOfYear]
ORDER BY TransactionTimestamp desc
) AS TransactionByMonth
FROM
tblSource
The problem that I have is that there will not necessarily be a transaction for every report every month... When that's the case, I need to carry forward the last known CurrentProductionHours value to the month which has no transaction as this indicates that there has been no change. Potentially, this value may need to be carried forward multiple times.
Source Data:
ReportId TransactionTimestamp CurrentProductionHours
1 2014-01-05 13:37:00 14.50
1 2014-01-20 09:15:00 15.00
1 2014-01-21 10:20:00 10.00
2 2014-01-22 09:43:00 22.00
1 2014-02-02 08:50:00 12.00
Target Results:
ReportId Month Year ProductionHours
1 1 2014 10.00
2 1 2014 22.00
1 2 2014 12.00
2 2 2014 22.00
I should also mention that I have a date table available, which can be referenced if required.
** UPDATE 05/03/2014 **
I now have query which is genertating results as shown in the example below but I'm left with islands of data (where a transaction existed in that month) and gaps in between... My question is still similar but in some ways a little more generic - What is the best way to fill gaps between data islands if you have the dataset below as a starting point?
ReportId Month Year ProductionHours
1 1 2014 10.00
1 2 2014 12.00
1 3 2014 NULL
2 1 2014 22.00
2 2 2014 NULL
2 3 2014 NULL
Any advice about how to tackle this would be greatly appreciated!
Try this:
;with a as
(
select dateadd(m, datediff(m, 0, min(TransactionTimestamp))+1,0) minTransactionTimestamp,
max(TransactionTimestamp) maxTransactionTimestamp from tblSource
), b as
(
select minTransactionTimestamp TT, maxTransactionTimestamp
from a
union all
select dateadd(m, 1, TT), maxTransactionTimestamp
from b
where tt < maxTransactionTimestamp
), c as
(
select distinct t.ReportId, b.TT from tblSource t
cross apply b
)
select c.ReportId,
month(dateadd(m, -1, c.TT)) Month,
year(dateadd(m, -1, c.TT)) Year,
x.CurrentProductionHours
from c
cross apply
(select top 1 CurrentProductionHours from tblSource
where TransactionTimestamp < c.TT
and ReportId = c.ReportId
order by TransactionTimestamp desc) x
A similar approach but using a cartesian to obtain all the combinations of report ids/months.
in the first step.
A second step adds to that cartesian the maximum timestamp from the source table where the month is less or equal to the month in the current row.
Finally it joins the source table to the temp table by report id/timestamp to obtain the latest source table row for every report id/month.
;
WITH allcombinations -- Cartesian (reportid X yearmonth)
AS ( SELECT reportid ,
yearmonth
FROM ( SELECT DISTINCT
reportid
FROM tblSource
) a
JOIN ( SELECT DISTINCT
DATEPART(yy, transactionTimestamp)
* 100 + DATEPART(MM,
transactionTimestamp) yearmonth
FROM tblSource
) b ON 1 = 1
),
maxdates --add correlated max timestamp where the month is less or equal to the month in current record
AS ( SELECT a.* ,
( SELECT MAX(transactionTimestamp)
FROM tblSource t
WHERE t.reportid = a.reportid
AND DATEPART(yy, t.transactionTimestamp)
* 100 + DATEPART(MM,
t.transactionTimestamp) <= a.yearmonth
) maxtstamp
FROM allcombinations a
)
-- join previous data to the source table by reportid and timestamp
SELECT distinct m.reportid ,
m.yearmonth ,
t.CurrentProductionHours
FROM maxdates m
JOIN tblSource t ON t.transactionTimestamp = m.maxtstamp and t.reportid=m.reportid
ORDER BY m.reportid ,
m.yearmonth