Coq - How to proof False when hypotesis is wrong - coq

I made an environment to try to proof what I want/need
I have a posfijo function that says if a list (l1) contains another list (l2) at the end.
So if I add an element to the first list and I use the result as the second list, like l2 = x :: l1, I want to proof that is not possible.
I did this...
Variable G:Set.
Inductive posfijo : list _ -> list _ -> Prop :=
| posfijoB : forall l: list _, posfijo l l
| posfijoI : forall (l1 l2: list _) (a : G), posfijo l1 l2 -> posfijo l1 (cons a l2).
Infix "<<" := (posfijo) (at level 70, right associativity).
Lemma Pref4_a : forall (X:Set)(l: list G)(x:G), ~ (cons x l << l).
Proof.
intros X l x H.
So then my goal is

You should proceed with induction l.

Related

How can I prove equality of lists by induction?

I'm very new to Coq. Suppose under some hypothesis I want to prove l1 = l2, both of which are lists. I wonder what is a general strategy if I want to prove it inductively.
I don't know of any way to do induction on l1 and l2 at the same time. If I do induction first on l1, then I'll end up having to prove l1 = l2 under hypothesis t1 = l2, where t1 is tail of l1, which is obviously false.
Usually it depends on what kind of hypothesis you have.
However, as a general principle, if you want to synchronise two lists when doing induction on one, you have to generalise over the other.
induction l in l' |- *.
or
revert l'.
induction l.
It might also be that you have some hypothesis on both l and l' on which you can do induction instead.
For instance, the Forall2 predicate synchronises the two lists:
Inductive Forall2 (A B : Type) (R : A -> B -> Prop) : list A -> list B -> Prop :=
| Forall2_nil : Forall2 R [] []
| Forall2_cons : forall (x : A) (y : B) (l : list A) (l' : list B), R x y -> Forall2 R l l' -> Forall2 R (x :: l) (y :: l')
If you do induction on this, it will destruct both lists at the same time.

Subsets of list nat in coq

I defined a recursive function for all subsets of nat_list in coq as
Fixpoint subsets (a: list nat) : (list (list nat)) :=
match a with
|[] => [[]]
|h::t => subsets t ++ map (app [h]) (subsets t)
end.
I am trying to prove that
forall (a:list nat), In [] (subsets a).
I tried to induct on a. The base-case was straight forward. However in the induction case i tried to use the in-built theorem in_app_or.
Unable to unify "In ?M1396 ?M1394 \/ In ?M1396 ?M1395" with
"(fix In (a : list nat) (l : list (list nat)) {struct l} : Prop :=
match l with
| [] => False
| b :: m => b = a \/ In a m
end)
[] (subsets t ++ map (fun m : list nat => h :: m) (subsets t))".
How do I prove such a theorem or get around such an issue?
The problem with in_app_or is that is has the following type:
forall (A : Type) (l m : list A) (a : A),
In a (l ++ m) -> In a l \/ In a m
and application of lemmas to the goal works "backwards": Coq matches the consequent B of the implication A -> B with the goal, and if they can be unified, you are left with a new goal: you need to prove a (stronger) statement A. And in your case the A and B are in the wrong order (swapped), so you need to apply in_or_app instead:
in_or_app : forall (A : Type) (l m : list A) (a : A),
In a l \/ In a m -> In a (l ++ m)
This is how your goal can be proved using in_or_app:
Goal forall (a:list nat), In [] (subsets a).
intros.
induction a; simpl; auto.
apply in_or_app; auto.
Qed.

Restating lambdas in Coq without extensional function equality?

I am going over Software Foundations. There are two definitions of list reverse function given.
Fixpoint rev (l:natlist) : natlist :=
match l with
| nil => nil
| h :: t => rev t ++ [h]
end.
and a tail-recursive one:
Fixpoint rev_append {X} (l1 l2 : list X) : list X :=
match l1 with
| [] => l2
| x :: l1' => rev_append l1' (x :: l2)
end.
Definition tr_rev {X} (l : list X) : list X :=
rev_append l [].
Here is where the problem arrives. I am asked to prove their equality, with the following theorem stated: Lemma tr_rev_correct : ∀X, #tr_rev X = #rev X.
This generates the following proof state:
1 subgoal
______________________________________(1/1)
forall X : Type, tr_rev = rev
However, even if I do unfold tr_rev (and / or the other two definitions), I end up with something along the lines of:
1 subgoal
______________________________________(1/1)
forall X : Type, (fun l : list X => rev_append l [ ]) = rev
But I can't do anything with this formulation (other than intro X).
What I would like to have is this:
Lemma tr_rev_correct : forall (X : Type) (l : list X), tr_rev l = rev l.
Is there a way to replace the former with the latter without involving functional extensionality? (If I didn't want to restate the lemma that is given by the book.)

How to use a custom induction principle in Coq?

I read that the induction principle for a type is just a theorem about a proposition P. So I constructed an induction principle for List based on the right (or reverse) list constructor .
Definition rcons {X:Type} (l:list X) (x:X) : list X :=
l ++ x::nil.
The induction principle itself is:
Definition true_for_nil {X:Type}(P:list X -> Prop) : Prop :=
P nil.
Definition true_for_list {X:Type} (P:list X -> Prop) : Prop :=
forall xs, P xs.
Definition preserved_by_rcons {X:Type} (P: list X -> Prop): Prop :=
forall xs' x, P xs' -> P (rcons xs' x).
Theorem list_ind_rcons:
forall {X:Type} (P:list X -> Prop),
true_for_nil P ->
preserved_by_rcons P ->
true_for_list P.
Proof. Admitted.
But now, I am having trouble using the theorem. I don't how to invoke it to achieve the same as the induction tactic.
For example, I tried:
Theorem rev_app_dist: forall {X} (l1 l2:list X), rev (l1 ++ l2) = rev l2 ++ rev l1.
Proof. intros X l1 l2.
induction l2 using list_ind_rcons.
But in the last line, I got:
Error: Cannot recognize an induction scheme.
What are the correct steps to define and apply a custom induction principle like list_ind_rcons?
Thanks
If one would like to preserve the intermediate definitions, then one could use the Section mechanism, like so:
Require Import Coq.Lists.List. Import ListNotations.
Definition rcons {X:Type} (l:list X) (x:X) : list X :=
l ++ [x].
Section custom_induction_principle.
Variable X : Type.
Variable P : list X -> Prop.
Hypothesis true_for_nil : P nil.
Hypothesis true_for_list : forall xs, P xs.
Hypothesis preserved_by_rcons : forall xs' x, P xs' -> P (rcons xs' x).
Fixpoint list_ind_rcons (xs : list X) : P xs. Admitted.
End custom_induction_principle.
Coq substitutes the definitions and list_ind_rcons has the needed type and induction ... using ... works:
Theorem rev_app_dist: forall {X} (l1 l2:list X),
rev (l1 ++ l2) = rev l2 ++ rev l1.
Proof. intros X l1 l2.
induction l2 using list_ind_rcons.
Abort.
By the way, this induction principle is present in the standard library (List module):
Coq < Check rev_ind.
rev_ind
: forall (A : Type) (P : list A -> Prop),
P [] ->
(forall (x : A) (l : list A), P l -> P (l ++ [x])) ->
forall l : list A, P l
What you did was mostly correct. The problem is that Coq has some trouble recognizing that what you wrote is an induction principle, because of the intermediate definitions. This, for instance, works just fine:
Theorem list_ind_rcons:
forall {X:Type} (P:list X -> Prop),
P nil ->
(forall x l, P l -> P (rcons l x)) ->
forall l, P l.
Proof. Admitted.
Theorem rev_app_dist: forall {X} (l1 l2:list X), rev (l1 ++ l2) = rev l2 ++ rev l1.
Proof. intros X l1 l2.
induction l2 using #list_ind_rcons.
I don't know if Coq not being able to automatically unfold the intermediate definitions should be considered a bug or not, but at least there is a workaround.

Implementing safe element retrieval by index from list in Coq

I'm trying to demonstrate the difference in code generation between Coq Extraction mechanism and MAlonzo compiler in Agda. I came up with this simple example in Agda:
data Nat : Set where
zero : Nat
succ : Nat → Nat
data List (A : Set) : Set where
nil : List A
cons : A → List A → List A
length : ∀ {A} → List A → Nat
length nil = zero
length (cons _ xs) = succ (length xs)
data Fin : Nat → Set where
finzero : ∀ {n} → Fin (succ n)
finsucc : ∀ {n} → Fin n → Fin (succ n)
elemAt : ∀ {A} (xs : List A) → Fin (length xs) → A
elemAt nil ()
elemAt (cons x _) finzero = x
elemAt (cons _ xs) (finsucc n) = elemAt xs n
Direct translation to Coq (with absurd pattern emulation) yields:
Inductive Nat : Set :=
| zero : Nat
| succ : Nat -> Nat.
Inductive List (A : Type) : Type :=
| nil : List A
| cons : A -> List A -> List A.
Fixpoint length (A : Type) (xs : List A) {struct xs} : Nat :=
match xs with
| nil => zero
| cons _ xs' => succ (length _ xs')
end.
Inductive Fin : Nat -> Set :=
| finzero : forall n : Nat, Fin (succ n)
| finsucc : forall n : Nat, Fin n -> Fin (succ n).
Lemma finofzero : forall f : Fin zero, False.
Proof. intros a; inversion a. Qed.
Fixpoint elemAt (A : Type) (xs : List A) (n : Fin (length _ xs)) : A :=
match xs, n with
| nil, _ => match finofzero n with end
| cons x _, finzero _ => x
| cons _ xs', finsucc m n' => elemAt _ xs' n' (* fails *)
end.
But the last case in elemAt fails with:
File "./Main.v", line 26, characters 46-48:
Error:
In environment
elemAt : forall (A : Type) (xs : List A), Fin (length A xs) -> A
A : Type
xs : List A
n : Fin (length A xs)
a : A
xs' : List A
n0 : Fin (length A (cons A a xs'))
m : Nat
n' : Fin m
The term "n'" has type "Fin m" while it is expected to have type
"Fin (length A xs')".
It seems that Coq does not infer succ m = length A (cons A a xs'). What should I
tell Coq so it would use this information? Or am I doing something completely senseless?
Doing pattern matching is the equivalent of using the destruct tactic.
You won't be able to prove finofzero directly using destruct.
The inversion tactic automatically generates some equations before doing what destruct does.
Then it tries to do what discriminate does. The result is really messy.
Print finofzero.
To prove something like fin zero -> P you should change it to fin n -> n = zero -> P first.
To prove something like list nat -> P (more usually forall l : list nat, P l) you don't need to change it to list A -> A = nat -> P, because list's only argument is a parameter in its definition.
To prove something like S n <= 0 -> False you should change it to S n1 <= n2 -> n2 = 0 -> False first, because the first argument of <= is a parameter while the second one isn't.
In a goal f x = f y -> P (f y), to rewrite with the hypothesis you first need to change the goal to f x = z -> f y = z -> P z, and only then will you be able to rewrite with the hypothesis using induction, because the first argument of = (actually the second) is a parameter in the definition of =.
Try defining <= without parameters to see how the induction principle changes.
In general, before using induction on a predicate you should make sure it's arguments are variables. Otherwise information might be lost.
Conjecture zero_succ : forall n1, zero = succ n1 -> False.
Conjecture succ_succ : forall n1 n2, succ n1 = succ n2 -> n1 = n2.
Lemma finofzero : forall n1, Fin n1 -> n1 = zero -> False.
Proof.
intros n1 f1.
destruct f1.
intros e1.
eapply zero_succ.
eapply eq_sym.
eapply e1.
admit.
Qed.
(* Use the Show Proof command to see how the tactics manipulate the proof term. *)
Definition elemAt' : forall (A : Type) (xs : List A) (n : Nat), Fin n -> n = length A xs -> A.
Proof.
fix elemAt 2.
intros A xs.
destruct xs as [| x xs'].
intros n f e.
destruct (finofzero f e).
destruct 1.
intros e.
eapply x.
intros e.
eapply elemAt.
eapply H.
eapply succ_succ.
eapply e.
Defined.
Print elemAt'.
Definition elemAt : forall (A : Type) (xs : List A), Fin (length A xs) -> A :=
fun A xs f => elemAt' A xs (length A xs) f eq_refl.
CPDT has more about this.
Maybe things would be clearer if at the end of a proof Coq performed eta reduction and beta/zeta reduction (wherever variables occur at most once in scope).
I think your problem is similar to Dependent pattern matching in coq . Coq's match does not infer much, so you have to help it by providing the equality by hand.