How can I avoid constructing these grid variables in MATLAB? - matlab

I have the following calculations in two steps:
Initially, I create a set of 4 grid vectors, each spanning from -2 to 2:
u11grid=[-2:0.1:2];
u12grid=[-2:0.1:2];
u22grid=[-2:0.1:2];
u21grid=[-2:0.1:2];
[ca, cb, cc, cd] = ndgrid(u11grid, u12grid, u22grid, u21grid);
u11grid=ca(:);
u12grid=cb(:);
u22grid=cc(:);
u21grid=cd(:);
%grid=[u11grid u12grid u22grid u21grid]
sg=size(u11grid,1);
Next, I have an algorithm assigning the same index (equalorder) to the rows of grid sharing a specific structure:
U1grid=[-u11grid -u21grid -u12grid -u22grid Inf*ones(sg,1) -Inf*ones(sg,1)];
U2grid=[u21grid-u11grid -u21grid u22grid-u12grid -u22grid Inf*ones(sg,1) -Inf*ones(sg,1)];
s1=size(U1grid,2);
s2=size(U2grid,2);
%-------------------------------------------------------
%sortedU1grid gives U1grid with each row sorted from smallest to largest
%for each row i of sortedU1grid and for j=1,2,...,s1 index1(i,j) gives
%the column position 1,2,...,s1 in U1grid(i,:) of sortedU1grid(i,j)
[sortedU1grid,index1] = sort(U1grid,2);
%for each row i of sortedU1grid, d1(i,:) is a 1x(s1-1) row of ones and zeros
% d1(i,j)=1 if sortedU1grid(i,j)-sortedU1grid(i,j-1)=0 and d1(i,j)=0 otherwise
d1 = diff(sortedU1grid,[],2) == 0;
%-------------------------------------------------------
%Repeat for U2grid
[sortedU2grid,index2] = sort(U2grid,2);
d2 = diff(sortedU2grid,[],2) == 0;
%-------------------------------------------------------
%Assign the same index to the rows of grid sharing the same "ordering"
[~,~,equalorder] = unique([index1 index2 d1 d2],'rows', 'stable'); %sgx1
My question: is there a way to compute the algorithm in step 2 without the initial construction of the grid vectors in step 1? I am asking this because step 1 takes a lot of memory given that it basically generates the Cartesian product of 4 sets.
A solution should not rely on the specific content of U1grid and U2grid as that part changes in my actual code. To be more clear: U1grid and U2grid are ALWAYS derived from u11grid, ..., u21grid; however, the way in which they are derived from u11grid, ..., u21grid is slightly more complicated in my actual code from what I have reported here.

As Cris Luengo mentions in a comment, you're always going to be dealing with a trade-off between speed and memory. That said, one option you have is to only compute each of your 4 grid variables (u11grid u12grid u22grid u21grid) when needed instead of computing them once and storing them. You will save on memory but will lose speed if you are recomputing each one multiple times.
The solution I came up with involves creating an anonymous function equivalent for each of the 4 grid variables, using combinations of repmat and repelem to compute each individually instead of ndgrid to compute them all together:
u11gridFcn = #() repmat((-2:0.1:2).', 41.^3, 1);
u12gridFcn = #() repmat(repelem((-2:0.1:2).', 41), 41.^2, 1);
u22gridFcn = #() repmat(repelem((-2:0.1:2).', 41.^2), 41, 1);
u21gridFcn = #() repelem((-2:0.1:2).', 41.^3);
sg = 41.^4;
You would then use these by replacing every usage of your 4 grid variables in U1grid and U2grid with their corresponding function call. For your specific example above, this would be the new code for U1grid and U2grid (note also the use of inf(...) instead of Inf*ones(...), a small detail):
U1grid = [-u11gridFcn() ...
-u21gridFcn() ...
-u12gridFcn() ...
-u22gridFcn() ...
inf(sg, 1) ...
-inf(sg, 1)];
U2grid = [u21gridFcn()-u11gridFcn() ...
-u21gridFcn() ...
u22gridFcn()-u12gridFcn() ...
-u22gridFcn() ...
inf(sg, 1) ...
-inf(sg, 1)];
In this example, you avoid the memory needed to store the 4 grid variables, but the values for u11grid and u12grid will each be computed twice while the values for u21grid and u22grid will each be computed three times. Likely a small time trade-off for a potentially significant memory savings.

You may be able to remove the ndgrid, but it is not the memory bottleneck of this code, which is the call to unique on the large matrix A = [index1 index2 d1 d2]. The size of A is 2825761 by 22 (much larger than the grids), and it seems that unique may even internally copy A. I was able to avoid this call using
[sorted, ind] = sortrows([index1 index2 d1 d2]);
change = [1; any(diff(sorted), 2)];
uniqueInd = cumsum(change);
equalorder(ind) = uniqueInd;
[~, ~, equalorder] = unique(equalorder, 'stable');
where the last line is still the memory bottleneck and is only needed if you want the same numbering as your code produces. If any unique ordering is okay, you can skip it. You may be able to further reduce the memory footprint by carefully clearing variables are soon as they are no longer needed.

Related

Can I vectorize extraction of data from a cell array in MATLAB?

I am wondering if it is possible to use a vector to access data within a cell array. I am hoping to accomplish this using a vectorized approach rather than a for-loop.
I'm attempting to run a simple microsimulation in MATLAB. I have a simulated cohort that is initially healthy, but some are at low risk for a particular disease while others are at high risk. Thus, I have an array (Starting_Cohort) that indicates each patient's risk level (first column) and their initial status (second column). In addition, I have a cell array (pstar) that indicates each patient's likelihood of transitioning between two hypothetical health states (i.e., "healthy" and "sick").
What I would like to accomplish is the following:
1) During each period of the simulation (t = 1:T), use the first column of the starting cohort to determine the patient's risk level (i.e., 1 or 2).
2) Use the risk level to access a specific row (dependent on their current health status) within a specific cell (dependent on their risk level) of the cell array.
3) Compare the resultant vector against a random draw from the uniform distribution (contained in the array "r"), and select the column number associated with the first value larger than that draw (the column number determines their health state in the subsequent period).
HOWEVER, I want to avoid doing this for one patient at a time (i.e., introducing a nested loop), as this increases the execution time of the code by an order of magnitude (the actual cohort consists of approximately 20000 patients). I've been trying to accomplish this through vectorization - that is, running the simulation over the entire patient cohort concurrently - but I hit a roadblock when trying to access data from the cell array described above.
Starting_Cohort = [1 1; 1 1; 2 1; 2 1;];
[Cohort_Size, ~] = size(Starting_Cohort);
pstar = cell(2, 1);
pstar{1, 1} = [0.75 1.00; 0.15 1.00]; pstar{2, 1} = [0.65 1.00; 0.25 1.00];
rng(1234, 'twister'); T = 5; r = rand(Cohort_Size, T);
Sim_Results = [Starting_Cohort zeros(Cohort_Size, T)];
for t = 1:T
[~, Sim_Results(:, t+2)] = max(pstar{Sim_Results(:, 1), 1} ...
(Sim_Results(:, t+1), :) > r(:, t), [], 2);
end
When I run the above code, I obtain the error "Expected one output from a curly brace or dot indexing expression, but there were 4 results." I take this to mean that my approach to extracting information from the cell array is inappropriate, although I'm not sure whether I can address this or how. I would be deeply appreciative for any assistance rendered!
UPDATE 070619: I did eventually get this to work, using the code below. Effectively, I created a string array containing the expression I wanted to apply to each row. The expression is identical for every row EXCEPT in that it contains the row index. I can then use arrayfun and evalin to produce results similar to those I was looking for. Unfortunately, my own problem involves sparse arrays, so I could not actually solve my original problem. However, I'm hoping this information may nonetheless be useful for others.
Starting_Cohort = [1 1; 1 1; 2 1; 2 1;];
[Cohort_Size, ~] = size(Starting_Cohort);
pstar = cell(2, 1);
pstar{1, 1} = [0.75 1.00; 0.15 1.00];
pstar{2, 1} = [0.65 1.00; 0.25 1.00];
rng(1234, 'twister'); T = 5; r = rand(Cohort_Size, T);
Sim_Results = [Starting_Cohort zeros(Cohort_Size, T)];
for i = 1:Cohort_Size
TEST(i, 1) = strcat("max(pstar{Sim_Results(", string(i), ", 1), 1}",...
"(Sim_Results(", string(i), ", t+1), :) > ", ...
"r(", string(i), ", t), [], 2)");
end
for t = 1:T
[~, Sim_Results(:, t+2)] = arrayfun(#(x) evalin('base', x), TEST);
end

dynamically fill vector without assigning empty matrix

Oftentimes I need to dynamically fill a vector in Matlab. However this is sligtly annoying since you first have to define an empty variable first, e.g.:
[a,b,c]=deal([]);
for ind=1:10
if rand>.5 %some random condition to emphasize the dynamical fill of vector
a=[a, randi(5)];
end
end
a %display result
Is there a better way to implement this 'push' function, so that you do not have to define an empty vector beforehand? People tell me this is nonsensical in Matlab- if you think this is the case please explain why.
related: Push a variable in a vector in Matlab, is-there-an-elegant-way-to-create-dynamic-array-in-matlab
In MATLAB, pre-allocation is the way to go. From the docs:
for and while loops that incrementally increase the size of a data structure each time through the loop can adversely affect performance and memory use.
As pointed out in the comments by m7913d, there is a question on MathWorks' answers section which addresses this same point, read it here.
I would suggest "over-allocating" memory, then reducing the size of the array after your loop.
numloops = 10;
a = nan(numloops, 1);
for ind = 1:numloops
if rand > 0.5
a(ind) = 1; % assign some value to the current loop index
end
end
a = a(~isnan(a)); % Get rid of values which weren't used (and remain NaN)
No, this doesn't decrease the amount you have to write before your loop, it's even worse than having to write a = []! However, you're better off spending a few extra keystrokes and minutes writing well structured code than making that saving and having worse code.
It is (as for as I known) not possible in MATLAB to omit the initialisation of your variable before using it in the right hand side of an expression. Moreover it is not desirable to omit it as preallocating an array is almost always the right way to go.
As mentioned in this post, it is even desirable to preallocate a matrix even if the exact number of elements is not known. To demonstrate it, a small benchmark is desirable:
Ns = [1 10 100 1000 10000 100000];
timeEmpty = zeros(size(Ns));
timePreallocate = zeros(size(Ns));
for i=1:length(Ns)
N = Ns(i);
timeEmpty(i) = timeit(#() testEmpty(N));
timePreallocate(i) = timeit(#() testPreallocate(N));
end
figure
semilogx(Ns, timeEmpty ./ timePreallocate);
xlabel('N')
ylabel('time_{empty}/time_{preallocate}');
% do not preallocate memory
function a = testEmpty (N)
a = [];
for ind=1:N
if rand>.5 %some random condition to emphasize the dynamical fill of vector
a=[a, randi(5)];
end
end
end
% preallocate memory with the largest possible return size
function a = testPreallocate (N)
last = 0;
a = zeros(N, 1);
for ind=1:N
if rand>.5 %some random condition to emphasize the dynamical fill of vector
last = last + 1;
a(last) = randi(5);
end
end
a = a(1:last);
end
This figure shows how much time the method without preallocating is slower than preallocating a matrix based on the largest possible return size. Note that preallocating is especially important for large matrices due the the exponential behaviour.

to find mean square error of two cell arrays of different sizes

I have two cell arrays. One is 'trans_blk' of size <232324x1> consists of cells of size <8x8> and another 'ca' is of size <1024x1> consists of cells of size <8x8>.
I want to compute mean square error (MSE) for each cell of 'ca' with respect to every cell of 'trans_blk'.
I used the following code to compute:
m=0;
for ii=0:7
for jj=0:7
m=m+((trans_blk{:,1}(ii,jj)-ca{:,1}(ii,jj))^2);
end
end
m=m/(size of cell); //size of cell=8*8
disp('MSE=',m);
Its giving an error. Bad cell reference operation in MATLAB.
A couple of ways that I figured you could go:
% First define the MSE function
mse = #(x,y) sum(sum((x-y).^2))./numel(x);
I'm a big fan of using bsxfun for things like this, but unfortunately it doesn't operate on cell arrays. So, I borrowed the singleton expansion form of the answer from here.
% Singleton expansion way:
mask = bsxfun(#or, true(size(A)), true(size(B))');
idx_A = bsxfun(#times, mask, reshape(1:numel(A), size(A)));
idx_B = bsxfun(#times, mask, reshape(1:numel(B), size(B))');
func = #(x,y) cellfun(#(a,b) mse(a,b),x,y);
C = func(A(idx_A), B(idx_B));
Now, if that is a bit too crazy (or if explicitly making the arrays by A(idx_A) is too big), then you could always try a loop approach such as the one below.
% Or a quick loop:
results = zeros(length(A),length(B));
y = B{1};
for iter = 1:length(B)
y = B{iter};
results(:,iter) = cellfun(#(x) mse(x,y) ,A);
end
If you run out of memory: Think of what you are allocating: a matrix of doubles that is (232324 x 1024) elements. (That's a decent chunk of memory. Depending on your system, that could be close to 2GB of memory...)
If you can't hold it all in memory, then you might have to decide what you are going to do with all the MSE's and either do it in batches, or find a machine that you can run the full simulation/code on.
EDIT
If you only want to keep the sum of all the MSEs (as OP states in comments below), then you can save on memory by
% Sum it as you go along:
results = zeros(length(A),1);
y = B{1};
for iter = 1:length(B)
y = B{iter};
results = results + cellfun(#(x) mse(x,y) ,A);
end
results =sum (results);

Fastest way to add multiple sparse matrices in a loop in MATLAB

I have a code that repeatedly calculates a sparse matrix in a loop (it performs this calculation 13472 times to be precise). Each of these sparse matrices is unique.
After each execution, it adds the newly calculated sparse matrix to what was originally a sparse zero matrix.
When all 13742 matrices have been added, the code exits the loop and the program terminates.
The code bottleneck occurs in adding the sparse matrices. I have made a dummy version of the code that exhibits the same behavior as my real code. It consists of a MATLAB function and a script given below.
(1) Function that generates the sparse matrix:
function out = test_evaluate_stiffness(n)
ind = randi([1 n*n],300,1);
val = rand(300,1);
[I,J] = ind2sub([n,n],ind);
out = sparse(I,J,val,n,n);
end
(2) Main script (program)
% Calculate the stiffness matrix
n=1000;
K=sparse([],[],[],n,n,n^2);
tic
for i=1:13472
temp=rand(1)*test_evaluate_stiffness(n);
K=K+temp;
end
fprintf('Stiffness Calculation Complete\nTime taken = %f s\n',toc)
I'm not very familiar with sparse matrix operations so I may be missing a critical point here that may allow my code to be sped up considerably.
Am I handling the updating of my stiffness matrix in a reasonable way in my code? Is there another way that I should be using sparse that will result in a faster solution?
A profiler report is also provided below:
If you only need the sum of those matrices, instead of building all of them individually and then summing them, simply concatenate the vectors I,J and vals and call sparse only once. If there are duplicate rows [i,j] in [I,J] the corresponding values S(i,j) will be summed automatically, so the code is absolutely equivalent. As calling sparse involves an internal call to a sorting algorithm, you save 13742-1 intermediate sorts and can get away with only one.
This involves changing the signature of test_evaluate_stiffness to output [I,J,val]:
function [I,J,val] = test_evaluate_stiffness(n)
and removing the line out = sparse(I,J,val,n,n);.
You will then change your other function to:
n = 1000;
[I,J,V] = deal([]);
tic;
for i = 1:13472
[I_i, J_i, V_i] = test_evaluate_stiffness(n);
nE = numel(I_i);
I(end+(1:nE)) = I_i;
J(end+(1:nE)) = J_i;
V(end+(1:nE)) = rand(1)*V_i;
end
K = sparse(I,J,V,n,n);
fprintf('Stiffness Calculation Complete\nTime taken = %f s\n',toc);
If you know the lengths of the output of test_evaluate_stiffness ahead of time, you can possibly save some time by preallocating the arrays I,J and V with appropriately-sized zeros matrices and set them using something like:
I((i-1)*nE + (1:nE)) = ...
J((i-1)*nE + (1:nE)) = ...
V((i-1)*nE + (1:nE)) = ...
The biggest remaining computation, taking 11s, is the sparse operation
on the final I,J,V vectors so I think we've taken it down to the bare
bones.
Nearly... but one final trick: if you can create the vectors so that J is sorted ascending then you will greatly improve the speed of the sparse call, about a factor 4 in my experience.
(If it's easier to have I sorted, then create the transpose matrix sparse(J,I,V) and un-transpose it afterwards.)

A moving average with different functions and varying time-frames

I have a matrix time-series data for 8 variables with about 2500 points (~10 years of mon-fri) and would like to calculate the mean, variance, skewness and kurtosis on a 'moving average' basis.
Lets say frames = [100 252 504 756] - I would like calculate the four functions above on over each of the (time-)frames, on a daily basis - so the return for day 300 in the case with 100 day-frame, would be [mean variance skewness kurtosis] from the period day201-day300 (100 days in total)... and so on.
I know this means I would get an array output, and the the first frame number of days would be NaNs, but I can't figure out the required indexing to get this done...
This is an interesting question because I think the optimal solution is different for the mean than it is for the other sample statistics.
I've provided a simulation example below that you can work through.
First, choose some arbitrary parameters and simulate some data:
%#Set some arbitrary parameters
T = 100; N = 5;
WindowLength = 10;
%#Simulate some data
X = randn(T, N);
For the mean, use filter to obtain a moving average:
MeanMA = filter(ones(1, WindowLength) / WindowLength, 1, X);
MeanMA(1:WindowLength-1, :) = nan;
I had originally thought to solve this problem using conv as follows:
MeanMA = nan(T, N);
for n = 1:N
MeanMA(WindowLength:T, n) = conv(X(:, n), ones(WindowLength, 1), 'valid');
end
MeanMA = (1/WindowLength) * MeanMA;
But as #PhilGoddard pointed out in the comments, the filter approach avoids the need for the loop.
Also note that I've chosen to make the dates in the output matrix correspond to the dates in X so in later work you can use the same subscripts for both. Thus, the first WindowLength-1 observations in MeanMA will be nan.
For the variance, I can't see how to use either filter or conv or even a running sum to make things more efficient, so instead I perform the calculation manually at each iteration:
VarianceMA = nan(T, N);
for t = WindowLength:T
VarianceMA(t, :) = var(X(t-WindowLength+1:t, :));
end
We could speed things up slightly by exploiting the fact that we have already calculated the mean moving average. Simply replace the within loop line in the above with:
VarianceMA(t, :) = (1/(WindowLength-1)) * sum((bsxfun(#minus, X(t-WindowLength+1:t, :), MeanMA(t, :))).^2);
However, I doubt this will make much difference.
If anyone else can see a clever way to use filter or conv to get the moving window variance I'd be very interested to see it.
I leave the case of skewness and kurtosis to the OP, since they are essentially just the same as the variance example, but with the appropriate function.
A final point: if you were converting the above into a general function, you could pass in an anonymous function as one of the arguments, then you would have a moving average routine that works for arbitrary choice of transformations.
Final, final point: For a sequence of window lengths, simply loop over the entire code block for each window length.
I have managed to produce a solution, which only uses basic functions within MATLAB and can also be expanded to include other functions, (for finance: e.g. a moving Sharpe Ratio, or a moving Sortino Ratio). The code below shows this and contains hopefully sufficient commentary.
I am using a time series of Hedge Fund data, with ca. 10 years worth of daily returns (which were checked to be stationary - not shown in the code). Unfortunately I haven't got the corresponding dates in the example so the x-axis in the plots would be 'no. of days'.
% start by importing the data you need - here it is a selection out of an
% excel spreadsheet
returnsHF = xlsread('HFRXIndices_Final.xlsx','EquityHedgeMarketNeutral','D1:D2742');
% two years to be used for the moving average. (250 business days in one year)
window = 500;
% create zero-matrices to fill with the MA values at each point in time.
mean_avg = zeros(length(returnsHF)-window,1);
st_dev = zeros(length(returnsHF)-window,1);
skew = zeros(length(returnsHF)-window,1);
kurt = zeros(length(returnsHF)-window,1);
% Now work through the time-series with each of the functions (one can add
% any other functions required), assinging the values to the zero-matrices
for count = window:length(returnsHF)
% This is the most tricky part of the script, the indexing in this section
% The TwoYearReturn is what is shifted along one period at a time with the
% for-loop.
TwoYearReturn = returnsHF(count-window+1:count);
mean_avg(count-window+1) = mean(TwoYearReturn);
st_dev(count-window+1) = std(TwoYearReturn);
skew(count-window+1) = skewness(TwoYearReturn);
kurt(count-window +1) = kurtosis(TwoYearReturn);
end
% Plot the MAs
subplot(4,1,1), plot(mean_avg)
title('2yr mean')
subplot(4,1,2), plot(st_dev)
title('2yr stdv')
subplot(4,1,3), plot(skew)
title('2yr skewness')
subplot(4,1,4), plot(kurt)
title('2yr kurtosis')