I am trying to find the number of array item matches between multiple test arrays and one control array. After finding the number of matches, I want to append the test arrays to another array, sorted by number of matches between the control array and test array. For example, a test array with 3 matches would be at index 0, 2 matches at index 1, and so on.
let controlArray = ["milk", "honey"]
let test1 = ["honey", "water"]
let test2 = ["milk", "honey", "eggs"]
var sortedArrayBasedOnMatches = [[String]]()
/*I want to append test1 and test2 to sortedArrayBasedOnMatches based on how many items
test1 and test2 have in common with controlArray*/
/*in my example above, I would want sortedArrayBasedOnMatches to equal
[test2, test1] since test 2 has two matches and test 1 only has one*/
This can be done in a very functional and Swiftish way by writing a pipeline to process the input arrays:
let sortedArrayBasedOnMatches = [test1, test2] // initial unsorted array
.map { arr in (arr, arr.filter { controlArray.contains($0) }.count) } // making pairs of (array, numberOfMatches)
.sorted { $0.1 > $1.1 } // sorting by the number of matches
.map { $0.0 } // getting rid of the match count, if not needed
Update As #Carpsen90 pointed out, Switf 5 comes with support for count(where:) which reduces the amount of code needed in the first map() call. A solution that makes use of this could be written along the lines of
// Swift 5 already has this, let's add it for current versions too
#if !swift(>=5)
extension Sequence {
// taken from the SE proposal
// https://github.com/apple/swift-evolution/blob/master/proposals/0220-count-where.md#detailed-design
func count(where predicate: (Element) throws -> Bool) rethrows -> Int {
var count = 0
for element in self {
if try predicate(element) {
count += 1
}
}
return count
}
}
#endif
let sortedArrayBasedOnMatches = [test1, test2] // initial unsorted array
.map { (arr: $0, matchCount: $0.count(where: controlArray.contains)) } // making pairs of (array, numberOfMatches)
.sorted { $0.matchCount > $1.matchCount } // sorting by the number of matches
.map { $0.arr } // getting rid of the match count, if not needed
Another change in style from the original solution is to use labels for the tuple components, this makes the code a little bit clearer, but also a little bit more verbose.
One option is to convert each array to a Set and find the count of elements in the intersection with controlArray.
let controlArray = ["milk", "honey"]
let test1 = ["honey", "water"]
let test2 = ["milk", "honey", "eggs"]
var sortedArrayBasedOnMatches = [ test1, test2 ].sorted { (arr1, arr2) -> Bool in
return Set(arr1).intersection(controlArray).count > Set(arr2).intersection(controlArray).count
}
print(sortedArrayBasedOnMatches)
This will cover the case where elements are not unique in your control array(such as milk, milk, honey...) and with any number of test arrays.
func sortedArrayBasedOnMatches(testArrays:[[String]], control: [String]) -> [[String]]{
var final = [[String]].init()
var controlDict:[String: Int] = [:]
var orderDict:[Int: [[String]]] = [:] // the value is a array of arrays because there could be arrays with the same amount of matches.
for el in control{
if controlDict[el] == nil{
controlDict[el] = 1
}
else{
controlDict[el] = controlDict[el]! + 1
}
}
for tArr in testArrays{
var totalMatches = 0
var tDict = controlDict
for el in tArr{
if tDict[el] != nil && tDict[el] != 0 {
totalMatches += 1
tDict[el] = tDict[el]! - 1
}
}
if orderDict[totalMatches] == nil{
orderDict[totalMatches] = [[String]].init()
}
orderDict[totalMatches]?.append(tArr)
}
for key in Array(orderDict.keys).sorted(by: >) {
for arr in orderDict[key]! {
final.append(arr)
}
}
return final
}
Related
I am trying to count the number of items in an array which correspond to a particular attribute.
func subCount() {
let arr = subDS.subFolders // array
var counts: [String: Int] = [:]
arr.forEach { counts[$0.parentFolder!, default: 0] += 1 }
print(Array(counts.values))
}
when the code above is executed, if the count is zero it does not appear in the array. Also the order of the array formed in an incorrect order.
You can use filter method
for example :
var filterArray = subDS.subFolders.filter { $0. parentFolder == 0 }
let count = filterArray.count
The first $0 is from the filter and it represents each subFolders.
I have just picked up an interview question from the Internet and practicing with Swift.
Question is as follows:
Given an input of an array of string, verify if, turned 180 degrees, it is the "same".
For instance:
[1, 6, 0, 9, 1] => return true
[1, 7, 1] => return false
I have come up with the following approach which I put mirroring numbers in the dictionary and check whether or not if any number in the given array do not match with dictionary numbers.
It seems it works with basic test cases, but I wonder if I am missing anything ?
func checkRotation (nums : [Int]) -> Bool
{
var dict = [Int : Int]()
dict = [0:0, 1:1, 2:5, 5:2, 6:9, 8:8, 9:6]
for n in nums
{
guard let exist = dict[n] else
{
return false
}
}
return true
}
extension Collection where Element == Int {
func isFlipMirrored() -> Bool {
let mirrors = [0:0, 1:1, 6:9, 8:8, 9:6]
return zip(self, self.reversed()) // Create tuples of each element and its opposite
.allSatisfy { // Return whether all of them match the rule:
mirrors[$0] == $1 // That the element matches its opposite's mirror
}
}
}
This isn't as efficient as it could be, but it's very simple and to the point. It just verifies that each element of the sequence is the same as the mirrored elements in the reverse order.
It could be more efficient to only check the first half of the elements, but it's a pretty minor optimization that requires extra conditionals, so I'm not sure if it would really be faster for reasonably small N. You'd need to profile before complicating the code too much.
Of course, just because it's not actually slower (i.e. I haven't profiled it to know), that doesn't mean that an interviewer won't baulk at the fact that this code makes redundant checks. There are a lot of misunderstandings about performance, and they all seem to show up in interview questions. So, let's make the interviewer happy and only check the first half of the list against the last half.
extension Collection where Element == Int {
func isFlipMirrored() -> Bool {
let mirrors = [0:0, 1:1, 6:9, 8:8, 9:6]
// May test one more thing than we technically have to, but fewer conditionals
let midpoint = count / 2 + 1
return zip(self.prefix(midpoint), // Create tuples of the left-half of the list,
self.reversed().prefix(midpoint)) // and the right half
.allSatisfy { // Return whether all of them match the rule:
mirrors[$0] == $1 // that the element matches its opposite's mirror
}
}
}
I have some issues with your code, which I've annotated below:
func checkRotation /* Why the space here? */ (nums /* Why the space here? */ : [Int]) -> Bool
{ // Brackets like this aren't Swift's code style
// Dict is a horrible name. I can see that it's a dictionary. What is it a dict *of*?!
var dict = [Int : Int]() // Why is this a `var` variable, that's assigned an empty initial value
dict = [0:0, 1:1, 2:5, 5:2, 6:9, 8:8, 9:6] // only to be immediately overwritten?
for n in nums // This should be a `contains(_:)` call, rather than explicit enumeration
{
// If you're not using a `contains(_:)` check, you should at least use a `where` clause on the for loop
guard let exist = dict[n] else // "exist" is a bad variable name, and it's not even used. Replace this with a `dict[n] != nil` check.
{
return false
}
}
return true
}
Here is how I would write it in a similar way:
func checkRotation(nums: [Int]) -> Bool {
let mirroredDigits = [0:0, 1:1, 2:5, 5:2, 6:9, 8:8, 9:6]
for n in nums where mirroredDigits[n] == nil {
return false
}
return true
}
You can try
func checkRotation (nums : [Int]) -> Bool
{
var dict = [0:0, 1:1, 2:5, 5:2, 6:9, 8:8, 9:6]
return nums.filter{ dict[$0] != nil }.count == nums.count
}
Or
func checkRotation (nums : [Int]) -> Bool
{
var dict = [0:0, 1:1, 2:5, 5:2, 6:9, 8:8, 9:6]
return nums.compactMap{ dict[$0]}.count == nums.count
}
To know if array is convertible, you need to
traverse items upto index N/2 (including middle one for odd-length array)
check whether all items belong to dictionary
check that dict[nums[i]] == nums[N-i-1]
I don't know Swift, but Python example should look very close:
def isconv(lst):
dict = {0:0, 1:1, 2:5, 5:2, 6:9, 8:8, 9:6}
N = len(lst)
for i in range((N + 1) // 2):
if (lst[i] not in dict) or (dict[lst[i]] != lst[N - 1 - i]):
return False
return True
print(isconv([1,6,0,9,1]))
print(isconv([5,5,2,2]))
print(isconv([1,6,0,6,1]))
print(isconv([1,4,1]))
>>True
>>True
>>False
>>False
My approach would be to use prefix to limit the data set and enumerated to enumerate over indexes and values simultaneously. Throw in lazy so you don't make lots of array copies and only process what's relevant.
extension Array where Element == Int {
func isMirrored() -> Bool {
let flipped = [0:0, 1:1, 2:5, 5:2, 6:9, 8:8, 9:6]
return lazy // means we won't make 3 copies of arrays
.prefix((count + 1) / 2) // stops the enumeration at the midway point
.enumerated() // enumerates over (index, value)
.allSatisfy { (index, value) in // verify all elements meet the criteria below
// make sure each reversed element matches it's flipped value
// Note you don't have to explicitly check for nil, since
// '==' works on Optional<Int>
return flipped[value] == self[count - index - 1]
}
}
}
[1, 6, 0, 9, 1].isMirrored()
[1, 7, 1].isMirrored()
I am trying to solve code fights interview practice questions, but I am stuck on how to solve this particular problem in swift. My first thought was to use a dictionary with the counts of each character, but then I would have to iterate over the string again to compare, so that doesn't work per the restrictions. Any help would be good. Thank you. Here is the problem and requirements:
Note: Write a solution that only iterates over the string once and uses O(1) additional memory, since this is what you would be asked to do during a real interview.
Given a string s, find and return the first instance of a non-repeating character in it. If there is no such character, return '_'
Here is the code I started with (borrowed from another post)
func firstNotRepeatingCharacter(s: String) -> Character {
var countHash:[Character:Int] = [:]
for character in s {
countHash[character] = (countHash[character] ?? 0) + 1
}
let nonRepeatingCharacters = s.filter({countHash[$0] == 1})
let firstNonRepeatingCharacter = nonRepeatingCharacters.first!
return firstNonRepeatingCharacter
}
firstNotRepeatingCharacter(s:"abacabad")
You can create a dictionary to store the occurrences and use first(where:) method to return the first occurrence that happens only once:
Swift 4
func firstNotRepeatingCharacter(s: String) -> Character {
var occurrences: [Character: Int] = [:]
s.forEach{ occurrences[$0, default: 0] += 1 }
return s.first{ occurrences[$0] == 1 } ?? "_"
}
Swift 3
func firstNotRepeatingCharacter(s: String) -> Character {
var occurrences: [Character:Int] = [:]
s.characters.forEach{ occurrences[$0] = (occurrences[$0] ?? 0) + 1}
return s.characters.first{ occurrences[$0] == 1 } ?? "_"
}
Another option iterating the string in reversed order and using an array of 26 elements to store the characters occurrences
func firstNotRepeatingCharacter(s: String) -> Character {
var chars = Array(repeating: 0, count: 26)
var characters: [Character] = []
var charIndex = 0
var strIndex = 0
s.characters.reversed().forEach {
let index = Int(String($0).unicodeScalars.first!.value) - 97
chars[index] += 1
if chars[index] == 1 && strIndex >= charIndex {
characters.append($0)
charIndex = strIndex
}
strIndex += 1
}
return characters.reversed().first { chars[Int(String($0).unicodeScalars.first!.value) - 97] == 1 } ?? "_"
}
Use a dictionary to store the character counts as well as where they were first encountered. Then, loop over the dictionary (which is constant in size since there are only so many unique characters in the input string, thus also takes constant time to iterate) and find the earliest occurring character with a count of 1.
func firstUniqueCharacter(in s: String) -> Character
{
var characters = [Character: (count: Int, firstIndex: Int)]()
for (i, c) in s.characters.enumerated()
{
if let t = characters[c]
{
characters[c] = (t.count + 1, t.firstIndex)
}
else
{
characters[c] = (1, i)
}
}
var firstUnique = (character: Character("_"), index: Int.max)
for (k, v) in characters
{
if v.count == 1 && v.firstIndex <= firstUnique.index
{
firstUnique = (k, v.firstIndex)
}
}
return firstUnique.character
}
Swift
Use dictionary, uniqueCharacter optional variable with unique characters array to store all uniquely present characters in the string , every time duplication of characters found should delete that character from unique characters array and same time it is the most first character then should update the dictionary with its count incremented , refer following snippet , how end of the iteration through all characters gives a FIRST NON REPEATED CHARACTER in given String. Refer following code to understand it properly
func findFirstNonRepeatingCharacter(string:String) -> Character?{
var uniqueChars:[Character] = []
var uniqueChar:Character?
var chars = string.lowercased().characters
var charWithCount:[Character:Int] = [:]
for char in chars{
if let count = charWithCount[char] { //amazon
charWithCount[char] = count+1
if char == uniqueChar{
uniqueChars.removeFirst()
uniqueChar = uniqueChars.first
}
}else{
charWithCount[char] = 1
uniqueChars.append(char)
if uniqueChar == nil{
uniqueChar = char
}
}
}
return uniqueChar
}
// Use
findFirstNonRepeatingCharacter(string: "eabcdee")
I have a function in Swift that computes the hamming distance of two strings and then puts them into a connected graph if the result is 1.
For example, read to hear returns a hamming distance of 2 because read[0] != hear[0] and read[3] != hear[3].
At first, I thought my function was taking a long time because of the quantity of input (8,000+ word dictionary), but I knew that several minutes was too long. So, I rewrote my same algorithm in Java, and the computation took merely 0.3s.
I have tried writing this in Swift two different ways:
Way 1 - Substrings
extension String {
subscript (i: Int) -> String {
return self[Range(i ..< i + 1)]
}
}
private func getHammingDistance(w1: String, w2: String) -> Int {
if w1.length != w2.length { return -1 }
var counter = 0
for i in 0 ..< w1.length {
if w1[i] != w2[i] { counter += 1 }
}
return counter
}
Results: 434 seconds
Way 2 - Removing Characters
private func getHammingDistance(w1: String, w2: String) -> Int {
if w1.length != w2.length { return -1 }
var counter = 0
var c1 = w1, c2 = w2 // need to mutate
let length = w1.length
for i in 0 ..< length {
if c1.removeFirst() != c2.removeFirst() { counter += 1 }
}
return counter
}
Results: 156 seconds
Same Thing in Java
Results: 0.3 seconds
Where it's being called
var graph: Graph
func connectData() {
let verticies = graph.canvas // canvas is Array<Node>
// Node has key that holds the String
for vertex in 0 ..< verticies.count {
for compare in vertex + 1 ..< verticies.count {
if getHammingDistance(w1: verticies[vertex].key!, w2: verticies[compare].key!) == 1 {
graph.addEdge(source: verticies[vertex], neighbor: verticies[compare])
}
}
}
}
156 seconds is still far too inefficient for me. What is the absolute most efficient way of comparing characters in Swift? Is there a possible workaround for computing hamming distance that involves not comparing characters?
Edit
Edit 1: I am taking an entire dictionary of 4 and 5 letter words and creating a connected graph where the edges indicate a hamming distance of 1. Therefore, I am comparing 8,000+ words to each other to generate edges.
Edit 2: Added method call.
Unless you chose a fixed length character model for your strings, methods and properties such as .count and .characters will have a complexity of O(n) or at best O(n/2) (where n is the string length). If you were to store your data in an array of character (e.g. [Character] ), your functions would perform much better.
You can also combine the whole calculation in a single pass using the zip() function
let hammingDistance = zip(word1.characters,word2.characters)
.filter{$0 != $1}.count
but that still requires going through all characters of every word pair.
...
Given that you're only looking for Hamming distances of 1, there is a faster way to get to all the unique pairs of words:
The strategy is to group words by the 4 (or 5) patterns that correspond to one "missing" letter. Each of these pattern groups defines a smaller scope for word pairs because words in different groups would be at a distance other than 1.
Each word will belong to as many groups as its character count.
For example :
"hear" will be part of the pattern groups:
"*ear", "h*ar", "he*r" and "hea*".
Any other word that would correspond to one of these 4 pattern groups would be at a Hamming distance of 1 from "hear".
Here is how this can be implemented:
// Test data 8500 words of 4-5 characters ...
var seenWords = Set<String>()
var allWords = try! String(contentsOfFile: "/usr/share/dict/words")
.lowercased()
.components(separatedBy:"\n")
.filter{$0.characters.count == 4 || $0.characters.count == 5}
.filter{seenWords.insert($0).inserted}
.enumerated().filter{$0.0 < 8500}.map{$1}
// Compute patterns for a Hamming distance of 1
// Replace each letter position with "*" to create patterns of
// one "non-matching" letter
public func wordH1Patterns(_ aWord:String) -> [String]
{
var result : [String] = []
let fullWord : [Character] = aWord.characters.map{$0}
for index in 0..<fullWord.count
{
var pattern = fullWord
pattern[index] = "*"
result.append(String(pattern))
}
return result
}
// Group words around matching patterns
// and add unique pairs from each group
func addHamming1Edges()
{
// Prepare pattern groups ...
//
var patternIndex:[String:Int] = [:]
var hamming1Groups:[[String]] = []
for word in allWords
{
for pattern in wordH1Patterns(word)
{
if let index = patternIndex[pattern]
{
hamming1Groups[index].append(word)
}
else
{
let index = hamming1Groups.count
patternIndex[pattern] = index
hamming1Groups.append([word])
}
}
}
// add edge nodes ...
//
for h1Group in hamming1Groups
{
for (index,sourceWord) in h1Group.dropLast(1).enumerated()
{
for targetIndex in index+1..<h1Group.count
{ addEdge(source:sourceWord, neighbour:h1Group[targetIndex]) }
}
}
}
On my 2012 MacBook Pro, the 8500 words go through 22817 (unique) edge pairs in 0.12 sec.
[EDIT] to illustrate my first point, I made a "brute force" algorithm using arrays of characters instead of Strings :
let wordArrays = allWords.map{Array($0.unicodeScalars)}
for i in 0..<wordArrays.count-1
{
let word1 = wordArrays[i]
for j in i+1..<wordArrays.count
{
let word2 = wordArrays[j]
if word1.count != word2.count { continue }
var distance = 0
for c in 0..<word1.count
{
if word1[c] == word2[c] { continue }
distance += 1
if distance > 1 { break }
}
if distance == 1
{ addEdge(source:allWords[i], neighbour:allWords[j]) }
}
}
This goes through the unique pairs in 0.27 sec. The reason for the speed difference is the internal model of Swift Strings which is not actually an array of equal length elements (characters) but rather a chain of varying length encoded characters (similar to the UTF model where special bytes indicate that the following 2 or 3 bytes are part of a single character. There is no simple Base+Displacement indexing of such a structure which must always be iterated from the beginning to get to the Nth element.
Note that I used unicodeScalars instead of Character because they are 16 bit fixed length representations of characters that allow a direct binary comparison. The Character type isn't as straightforward and take longer to compare.
Try this:
extension String {
func hammingDistance(to other: String) -> Int? {
guard self.characters.count == other.characters.count else { return nil }
return zip(self.characters, other.characters).reduce(0) { distance, chars in
distance + (chars.0 == chars.1 ? 0 : 1)
}
}
}
print("read".hammingDistance(to: "hear")) // => 2
The following code executed in 0.07 secounds for 8500 characters:
func getHammingDistance(w1: String, w2: String) -> Int {
if w1.characters.count != w2.characters.count {
return -1
}
let arr1 = Array(w1.characters)
let arr2 = Array(w2.characters)
var counter = 0
for i in 0 ..< arr1.count {
if arr1[i] != arr2[i] { counter += 1 }
}
return counter
}
After some messing around, I found a faster solution to #Alexander's answer (and my previous broken answer)
extension String {
func hammingDistance(to other: String) -> Int? {
guard !self.isEmpty, !other.isEmpty, self.characters.count == other.characters.count else {
return nil
}
var w1Iterator = self.characters.makeIterator()
var w2Iterator = other.characters.makeIterator()
var distance = 0;
while let w1Char = w1Iterator.next(), let w2Char = w2Iterator.next() {
distance += (w1Char != w2Char) ? 1 : 0
}
return distance
}
}
For comparing strings with a million characters, on my machine it's 1.078 sec compared to 1.220 sec, so roughly a 10% improvement. My guess is this is due to avoiding .zip and the slight overhead of .reduce and tuples
As others have noted, calling .characters repeatedly takes time. If you convert all of the strings once, it should help.
func connectData() {
let verticies = graph.canvas // canvas is Array<Node>
// Node has key that holds the String
// Convert all of the keys to utf16, and keep them
let nodesAsUTF = verticies.map { $0.key!.utf16 }
for vertex in 0 ..< verticies.count {
for compare in vertex + 1 ..< verticies.count {
if getHammingDistance(w1: nodesAsUTF[vertex], w2: nodesAsUTF[compare]) == 1 {
graph.addEdge(source: verticies[vertex], neighbor: verticies[compare])
}
}
}
}
// Calculate the hamming distance of two UTF16 views
func getHammingDistance(w1: String.UTF16View, w2: String.UTF16View) -> Int {
if w1.count != w2.count {
return -1
}
var counter = 0
for i in w1.startIndex ..< w1.endIndex {
if w1[i] != w1[i] {
counter += 1
}
}
return counter
}
I used UTF16, but you might want to try UTF8 depending on the data. Since I don't have the dictionary you are using, please let me know the result!
*broken*, see new answer
My approach:
private func getHammingDistance(w1: String, w2: String) -> Int {
guard w1.characters.count == w2.characters.count else {
return -1
}
let countArray: Int = w1.characters.indices
.reduce(0, {$0 + (w1[$1] == w2[$1] ? 0 : 1)})
return countArray
}
comparing 2 strings of 10,000 random characters took 0.31 seconds
To expand a bit: it should only require one iteration through the strings, adding as it goes.
Also it's way more concise 🙂.
i have some question about swift 2 random. I have an enum sub class of all cards example:
enum CardName : Int{
case Card2Heart = 0,
Card2Diamond,
Card2Club,
Card2Spade,
Card3Heart..... }
I want to select 10 random cards on the didMoveToView
To get a unique, random set of numbers you can do the following...
Using the Fisher-Yates shuffle from here... How do I shuffle an array in Swift?
You can do...
var numbers = Array(0...51)
numbers.shuffleInPlace()
let uniqueSelection = numbers[0..<10]
or...
let uniqueSelection = Array(0...51).shuffleInPlace()[0..<10]
This will create a random, unique selection of 10 numbers (cards) from the array of 52 cards that you start with.
You can then iterate this array to get the enums or create an array of all enums to start from etc... There are lots of ways to use this.
In Swift 4.2 (coming with Xcode 10) the task will become much easier:
enum CardName: CaseIterable {
case Card2Heart
case Card2Diamond
case Card2Club
case Card2Spade
case Card3Heart
// ...
}
let randomCard = CardName.allCases.randomElement()
print(randomCard)
let randomCards10 = CardName.allCases.shuffled().prefix(10)
print(randomCards10)
Note there is no need for the enum to inherit from Int.
Following your last comment, here's a little, simplified example with the constraint of having to keep your enum for making the cards.
We need to include the extensions linked by Fogmeister:
extension MutableCollectionType where Index == Int {
/// Shuffle the elements of `self` in-place.
mutating func shuffleInPlace() {
// empty and single-element collections don't shuffle
if count < 2 { return }
for i in 0..<count - 1 {
let j = Int(arc4random_uniform(UInt32(count - i))) + i
guard i != j else { continue }
swap(&self[i], &self[j])
}
}
}
extension CollectionType {
/// Return a copy of `self` with its elements shuffled
func shuffle() -> [Generator.Element] {
var list = Array(self)
list.shuffleInPlace()
return list
}
}
These extensions will allow us to shuffle an array of values.
Which array?
There's many ways, but the simplest option is probably to make an array of indices, which are simple integers (replace 52 with the actual number of cards in your enum):
Array(1...52) // [1, 2, 3, ... , 52]
We shuffle it:
Array(1...52).shuffle() // [33, 42, 7, ...]
Now we have an array of randomized indices. Let's make cards from this with your enum:
Array(0...51).shuffle().flatMap({ CardName(rawValue: $0) })
This is it, we have an array of cards in a random order:
let shuffledDeck = Array(0...51).shuffle().flatMap({ CardName(rawValue: $0) }) // [Card3Heart, Card2Diamond, ...]
and we can take cards from it:
func takeCardsFromDeck(number: Int) -> [CardName] {
if shuffledDeck.count > number {
let cards = Array(shuffledDeck[0..<number])
shuffledDeck.removeRange(0..<number)
return cards
}
return []
}
let tenRandomCards = takeCards(10)
Of course we need to remove from the deck the cards we've dealt, that way each card you draw is unique: we're using removeRange for that.
This example was kept simple on purpose: you still have to verify that there's enough cards in the deck before drawing, and lots of unsuspected other complexities. But it's so fun. ;)
If you want, you can search for additional inspiration in my implementation of these models and others (Deck, Dealer, Player, etc) in my PokerHands repository (MIT Licenced) on GitHub.
Swift 4.2
No need for these extensions anymore, we can use the .shuffle() and .shuffled() methods provided by Swift. Just remove the extensions, and rename the methods: the equivalent of our old "shuffleInPlace" is now .shuffle() and the equivalent of our old "shuffle" is now .shuffled().
Note: see Sulthan's answer for an even better solution using Swift 4.2.
Here is the shuffleInPlace() code that you are missing;
extension MutableCollectionType where Index == Int {
mutating func shuffleInPlace() {
if count < 2 { return }
for i in 0..<count - 1 {
let j = Int(arc4random_uniform(UInt32(count - i))) + i
guard i != j else { continue }
swap(&self[i], &self[j])
}
}
}
how to randomly spread enum values set
import Darwin // arc4random_uniform
enum E:Int {
case E1, E2, E3, E4, E5, E6, E7, E8, E9, E10
static var set:[E] { return (E.E1.rawValue...E.E10.rawValue).flatMap { E(rawValue: $0) }}
}
func spread(i:Int = 0, arr:[E])->([E],[E]) {
var i = i == 0 ? arr.count : i
var e:[E] = []
var arr = arr
while i > 0 && arr.count > 0 {
let idx = Int(arc4random_uniform(UInt32(arr.count-1)))
e.append(arr.removeAtIndex(idx))
i -= 1
}
return (e,arr)
}
let e1 = spread(3, arr: E.set)
let e2 = spread(2, arr: e1.1)
// ... spread the rest
let e3 = spread(arr: e2.1)
print(e1, e2, e3, separator:"\n")
/*
([E.E8, E.E6, E.E4], [E.E1, E.E2, E.E3, E.E5, E.E7, E.E9, E.E10])
([E.E1, E.E7], [E.E2, E.E3, E.E5, E.E9, E.E10])
([E.E5, E.E3, E.E2, E.E9, E.E10], [])
*/