Identify relative positions among ROI - matlab

Simplifying the question. I want to find the relevant position of an ROI to other ROIs and place the results in a matrix.
example, here is a picture containing a series of ROIs.
Positions of ROIs can be pulled using the region props function.
stats = regionprops(ROIs,'centroid');
First I thought of taking a centroid and using it as an anchor for other points
t1 = transpose([stats.Centroid]);
t2 = transpose(reshape(t1,[2,40]));
[~,idx] = find(t2(:,1)==min(t2(:,1)));
anchorpoint = t2(idx,:);
ydif = t2(:,1)-anchorpoint(1);
xdif = t2(:,2)-anchorpoint(2);
This will give me relative distances to the anchor point with sign (+ -) denoting before, after or above, below. what would be the next step?
I can find the supposed dimensions of the array from the anchor point
ydim = sum((abs(ydif)<20))
ydim = 5
xdim = sum((abs(xdif)<20))
xdim = 8
but this is relative as there are gaps in ROIs.
I'm an lost as to what to do from this point

Related

Detect endpoints of a line

I want to detect the points shown in the image below:
I have done this so far:
[X,map] = rgb2ind(img,0.0);
img = ind2gray(X,map); % Convert indexed to grayscale
level = graythresh(img); % Compute an appropriate threshold
img_bw = im2bw(img,level);% Convert grayscale to binary
mask = zeros(size(img_bw));
mask(2:end-2,2:end-2) = 1;
img_bw(mask<1) = 1;
%invert image
img_inv =1-img_bw;
% find blobs
img_blobs = bwmorph(img_inv,'majority',10);
% figure, imshow(img_blobs);
[rows, columns] = size(img_blobs);
for col = 1 : columns
thisColumn = img_blobs(:, col);
topRow = find(thisColumn, 1, 'first');
bottomRow = find(thisColumn, 1, 'last');
img_blobs(topRow : bottomRow, col) = true;
end
inverted = imcomplement(img_blobs);
ed = edge(inverted,'canny');
figure, imshow(ed),title('inverted');
Now how to proceed to get the coordinates of the desired position?
The top point is obviously the white pixel with the highest ordinate, which is easily obtained.
The bottom point is not so well defined. What you can do is
follow the peak edges until you reach a local minimum, on the left and on the right. That gives you a line segment, which you can intersect with the vertical through the top point.
if you know a the peak width, try every pixel on the vertical through the top point, downward, and stop until it has no left nor right neighbors at a distance equal to the peak with.
as above, but stop when the distance between the left and right neighbors exceeds a threshold.
In this particular case, you could consider using houghlines in matlab. Setting the required Theta and MinLength parameter values, you should be able to get the two vertical lines parallel to your peak. You can use the end points of the vertical lines, to get the point at the bottom.
Here is a sample code.
[H,theta,rho] = hough(bw,'Theta',5:1:30);%This is the angle range
P = houghpeaks(H,500,'NHoodSize',[11 11]);
lines = houghlines(bw,theta,rho,P,'FillGap',10,'MinLength',300);
Here is a complete description of how houghlines actually works.

I need to create a 3D sphere from a bunch of 2D slices

I currently have to create a sphere from a stack of 2D slices (2D matrices in MATLAB, which represent 2D gray scale images). I have created a bunch of slices using the code below. To create the sphere I have repeatedly created slices of circles of increasing size till 100, and then of decreasing sizes. All of these slices are added to a 3D matrix.
Circle = ones(200,400,400);
for i = 1:100
[rr cc] = meshgrid(1:400);
C = sqrt((rr-200).^2+(cc-200).^2)<=i;
for j = 1:400
for k = 1:400
Circle(i,j,k) = C(j,k);
end
end
end
index = 100;
for i = 1:100
[rr cc] = meshgrid(1:400);
C = sqrt((rr-200).^2+(cc-200).^2)<=index;
for j = 1:400
for k = 1:400
Circle(i+100,j,k) = C(j,k);
end
end
index = index - 1;
end
viewer3d(Circle);
viewer3d is 3rd part library that helps you view your 3D image stacks of slices as 3d objects. Once I visualized this 'supposed' sphere, I realized that it is a diamond shape top and not a sphere.
Therefore I do not understand how to vary the size of circles till the center point of the sphere in the y plane and then decrease it with the same algorithm.
Thank you for your answers and please do not hesitate to ask me to clarify anything within this question.
Alternatively, create a sphere directly, without using loops:
Circle = zeros(200,400,400);
[x,y,z]=meshgrid(1:size(Circle,1),1:size(Circle,2),1:size(Circle,3));
radius=??; %// e.g. radius=100;
%//this sphere is centered in the middle of the image
Circle(sqrt((x-size(Circle,1)/2).^2+(y-size(Circle,2)/2).^2..
+(z-size(Circle,2)/2).^2)<radius)=1;
Yes, the radius along the Z axis is not linear but varies with cos/sin function. Using this representation:
your radius is "Radius = r sin(Theta)", with "Theta = arccos(r / z)". So "r" is the radius of your sphere, and "z" the level/slice you want to draw in. Don't forget to that "z" goes from -"r" to "r". I've tested the formulae and it works fine for an image stack (slices).

Complete partial circles in an image using MATLAB

I have binary images and they have semi or less circles. My aim is to find these circles, make them whole circles and remove all other objects . I found this but it is for MATLAB R2013a. I am using R2011b and it doesn't have the function centers = imfindcircles(A,radius).
How can I do that in MATLAB version R2011b?
Images:
Edit:
My aim is to get whole circle. I show this below for the last image.
Too bad about imfindcircles! One thing I can suggest is to invoke regionprops and specify the 'Area' and 'BoundingBox' flags. regionprops was available in MATLAB for as long as I can remember, so we can certainly use it here.
What this will do is that whatever distinct objects that are seen in the image that are connected, we will find both their areas and their bounding boxes that bound them. After you do this, threshold on the area so that any objects that have a very large area most likely contain circles of interest. Bear in mind that I'm only assuming that you have circles in your image. Should you have any objects that have a large area, this method will extract those out too.
As such, let's read in your image directly from Stack Overflow. When you uploaded the image, it's a RGB image, so I'll have to convert to binary:
im = imread('http://i.stack.imgur.com/wQLPi.jpg');
im_bw = im2bw(im);
Next, call regionprops:
s = regionprops(im_bw, 'Area', 'BoundingBox');
Now, collect all of the areas, and let's take a look at all of the unique areas of all objects seen in this image:
areas = [s.Area].';
unique(areas)
ans =
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
19
20
23
24
25
28
29
38
43
72
73
85
87
250
465
3127
If you take a look at the very end, you'll see that we have an object that has 3127 pixels in it. This probably contains our circle. As such, let's pick out that single element that contains this object:
s2 = s(areas == 3127);
In general, you'll probably have more than one circle in your image, so you should threshold the area to select those potential circles. Something like:
s2 = s(areas > 2000);
Now, let's create a new blank image that is the same size as the original image, then simply use the BoundingBox property to extract out the area that encompasses the circle in the original image and copy it over to the same location in the output image. The BoundingBox field is structured in the following way:
[x y w h]
x and y are the top-left corner of the bounding box. x would be the column and y would be the row. w and h are the width and height of the bounding box. As such, we can use this directly to access our image and copy those pixels over into the output image.
out = false(size(im_bw));
bb = floor(s2.BoundingBox); %// Could be floating point, so floor it
out(bb(2):bb(2)+bb(4)-1, bb(1):bb(1)+bb(3)-1) = im_bw(bb(2):bb(2)+bb(4)-1, bb(1):bb(1)+bb(3)-1);
This is what I get:
What you should probably do is loop over the circles in case we have more than one. The above code assumes that you detected just one circle. Therefore, do something like this:
out = false(size(im_bw));
for idx = 1 : numel(s2) %// For each potential circle we have...
bb = floor(s2(idx).BoundingBox); %// Could be floating point, so floor it
%// Copy over pixels from original bw image to output
out(bb(2):bb(2)+bb(4)-1, bb(1):bb(1)+bb(3)-1) = im_bw(bb(2):bb(2)+bb(4)-1, bb(1):bb(1)+bb(3)-1);
end
A small thing to note is that the bounding box encompasses the entire object, but there could also be some noisy pixels that are disconnected that are within that bounding box. You may have to apply some morphology to get rid of those pixels. A binary opening could suffice.
Here's what I get with your other images. I thresholded the area to search for those that have 2000 pixels or more (I did this above):
Just for self-containment and your copy-and-pasting pleasure, here's the code in one segment:
clear all;
close all;
%im = imread('http://i.stack.imgur.com/qychC.jpg');
%im = imread('http://i.stack.imgur.com/wQLPi.jpg');
im = imread('http://i.stack.imgur.com/mZMBA.jpg');
im_bw = im2bw(im);
s = regionprops(im_bw, 'Area', 'BoundingBox');
areas = [s.Area].';
s2 = s(areas > 2000);
out = false(size(im_bw));
for idx = 1 : numel(s2) %// For each potential circle we have...
bb = floor(s2(idx).BoundingBox); %// Could be floating point, so floor it
%// Copy over pixels from original bw image to output
out(bb(2):bb(2)+bb(4)-1, bb(1):bb(1)+bb(3)-1) = im_bw(bb(2):bb(2)+bb(4)-1, bb(1):bb(1)+bb(3)-1);
end
imshow(out);
All three images are there in the code. You just have to uncomment whichever one you want to use, comment out the rest, then run the code. It will display an image with all of your detected circles.
Edit
You would like to draw complete circles, instead of extracting the shape themselves. That isn't a problem to do. All you need to do is determine the best "radii" that can be enclosed inside each of the bounding boxes. This is simply the maximum of the width and height of each bounding box, then divide these quantities by 2.
After, create a 2D grid of co-ordinates through meshgrid that is the same size as the original image itself, then create a binary image such that the Euclidean distance between the centre of this bounding box with any point in this 2D grid less than the radius is set to logical true while the other positions are set to logical false.
In other words, do this:
clear all;
close all;
im = imread('http://i.stack.imgur.com/qychC.jpg');
%im = imread('http://i.stack.imgur.com/wQLPi.jpg');
%im = imread('http://i.stack.imgur.com/mZMBA.jpg');
im_bw = im2bw(im);
s = regionprops(im_bw, 'Area', 'BoundingBox');
areas = [s.Area].';
s2 = s(areas > 2000);
out = false(size(im_bw));
for idx = 1 : numel(s2) %// For each potential circle we have...
bb = floor(s2(idx).BoundingBox); %// Could be floating point, so floor it
%// Copy over pixels from original bw image to output
out(bb(2):bb(2)+bb(4)-1, bb(1):bb(1)+bb(3)-1) = im_bw(bb(2):bb(2)+bb(4)-1, bb(1):bb(1)+bb(3)-1);
end
figure;
imshow(out);
%// Image that contains all of our final circles
out2 = false(size(im_bw));
[X,Y] = meshgrid(1:size(im_bw,2), 1:size(im_bw,1)); %// Find a 2D grid of co-ordinates
for idx = 1 : numel(s2) %// For each circle we have...
bb = floor(s2(idx).BoundingBox); %// Could be floating point, so floor it
cenx = bb(1) + (bb(3) / 2.0); %// Get the centre of the bounding box
ceny = bb(2) + (bb(4) / 2.0);
radi = max(bb(3), bb(4)) / 2; %// Find the best radius
tmp = ((X - cenx).^2 + (Y - ceny).^2) <= radi^2; %// Draw our circle and place in a temp. image
out2 = out2 | tmp; %// Add this circle on top of our output image
end
figure;
imshow(out2);
This script now shows you the original extracted shapes, and the best "circles" that describes these shapes in two separate figures. Bear in mind that this is a bit different than what I showed you previously with one circle. What I have to do now is allocate a blank image, then incrementally add each circle to this new image. For each circle, I create a temporary binary image that has just a circle I'm looking for, then I add this on top of the new image. At the end, we will show all of the circles in the image that are fully drawn as you desire.
This is what I get for the best circle for each of your images:
Good luck!

OpenCV MATLAB: How to draw a line having a particular Intensity profile?

Below is an arbitrary hand-drawn Intensity profile of a line in an image:
The task is to draw the line. The profile can be approximated to an arc of a circle or ellipse.
This I am doing for camera calibration. Since I do not have the actual industrial camera, I am trying to simulate the correction needed for calibration.
The question can be rephrased as I want pixel values which will follow a plot similar to the above. I want to do this using program (Preferably using opencv) and not manually enter these values because I have thousands of pixels in the line.
An algorithm/pseudo code will suffice. Also please note that I do not have any actual Intensity profile, otherwise I would have read those values.
When will you encounter such situation ?
Suppose you take a picture (assuming complete white) from a Camera, your object being placed on table, and camera just above it in vertical direction. The light coming on the center of the picture vertically downward from the camera will be stronger in intensity as compared to the light reflecting at the edges. You measure pixel values across any line in the Image, you will find intensity curve like shown above. Since I dont have camera for the time being, I want to emulate this situation. How to achieve this?
This is not exactly image processing, rather image generation... but anyways.
Since you want an arc, we still need three points on that arc, lets take the first, middle and last point (key characteristics in my opinion):
N = 100; % number of pixels
x1 = 1;
x2 = floor(N/2);
x3 = N;
y1 = 242;
y2 = 255;
y3 = 242;
and now draw a circle arc that contains these points.
This problem is already discussed here for matlab: http://www.mathworks.nl/matlabcentral/newsreader/view_thread/297070
x21 = x2-x1; y21 = y2-y1;
x31 = x3-x1; y31 = y3-y1;
h21 = x21^2+y21^2; h31 = x31^2+y31^2;
d = 2*(x21*y31-x31*y21);
a = x1+(h21*y31-h31*y21)/d; % circle center x
b = y1-(h21*x31-h31*x21)/d; % circle center y
r = sqrt(h21*h31*((x3-x2)^2+(y3-y2)^2))/abs(d); % circle radius
If you assume the middle value is always larger (and thus it's the upper part of the circle you'll have to plot), you can draw this with:
x = x1:x3;
y = b+sqrt(r^2-(x-a).^ 2);
plot(x,y);
you can adjust the visible window with
xlim([1 N]);
ylim([200 260]);
which gives me the following result:

How to measure the rotation of a image in MATLAB?

I have two images. One is the original, and the another is rotated.
Now, I need to discover the angle that the image was rotated. Until now, I thought about discovering the centroids of each color (as every image I will use has squares with colors in it) and use it to discover how much the image was rotated, but I failed.
I'm using this to discover the centroids and the color in the higher square in the image:
i = rgb2gray(img);
bw = im2bw(i,0.01);
s = regionprops(bw,'Centroid');
centroids = cat(1, s.Centroid);
colors = impixel(img,centroids(1),centroids(2));
top = max(centroids);
topcolor = impixel(img,top(1),top(2));
You can detect the corners of one of the colored rectangles in both the image and the rotated version, and use these as control points to infer the transformation between the two images (like in image registration) using the CP2TFORM function. We can then compute the angle of rotation from the affine transformation matrix:
Here is an example code:
%# read first image (indexed color image)
[I1 map1] = imread('http://i.stack.imgur.com/LwuW3.png');
%# constructed rotated image
deg = -15;
I2 = imrotate(I1, deg, 'bilinear', 'crop');
%# find blue rectangle
BW1 = (I1==2);
BW2 = imrotate(BW1, deg, 'bilinear', 'crop');
%# detect corners in both
p1 = corner(BW1, 'QualityLevel',0.5);
p2 = corner(BW2, 'QualityLevel',0.5);
%# sort corners coordinates in a consistent way (counter-clockwise)
p1 = sortrows(p1,[2 1]);
p2 = sortrows(p2,[2 1]);
idx = convhull(p1(:,1), p1(:,2)); p1 = p1(idx(1:end-1),:);
idx = convhull(p2(:,1), p2(:,2)); p2 = p2(idx(1:end-1),:);
%# make sure we have the same number of corner points
sz = min(size(p1,1),size(p2,1));
p1 = p1(1:sz,:); p2 = p2(1:sz,:);
%# infer transformation from corner points
t = cp2tform(p2,p1,'nonreflective similarity'); %# 'affine'
%# rotate image to match the other
II2 = imtransform(I2, t, 'XData',[1 size(I1,2)], 'YData',[1 size(I1,1)]);
%# recover affine transformation params (translation, rotation, scale)
ss = t.tdata.Tinv(2,1);
sc = t.tdata.Tinv(1,1);
tx = t.tdata.Tinv(3,1);
ty = t.tdata.Tinv(3,2);
translation = [tx ty];
scale = sqrt(ss*ss + sc*sc);
rotation = atan2(ss,sc)*180/pi;
%# plot the results
subplot(311), imshow(I1,map1), title('I1')
hold on, plot(p1(:,1),p1(:,2),'go')
subplot(312), imshow(I2,map1), title('I2')
hold on, plot(p2(:,1),p2(:,2),'go')
subplot(313), imshow(II2,map1)
title(sprintf('recovered angle = %g',rotation))
If you can identify a color corresponding to only one component it is easier to:
Calculate the centroids for each image
Calculate the mean of the centroids (in x and y) for each image. This is the "center" of each image
Get the red component color centroid (in your example) for each image
Subtract the mean of the centroids for each image from the red component color centroid for each image
Calculate the ArcTan2 for each of the vectors calculated in 4), and subtract the angles. That is your result.
If you have more than one figure of each color, you need to calculate all possible combinations for the rotation and then select the one that is compatible with the other possible rotations.
I could post the code in Mathematica, if you think it is useful.
I would take a variant to the above mentioned approach:
% Crude binarization method to knock out background and retain foreground
% features. Note one looses the cube in the middle
im = im > 1
Then I would get the 2D autocorrelation:
acf = normxcorr2(im, im);
From this result, one can easily detect the peaks, and as rotation carries into the autocorrelation function (ACF) domain, one can ascertain the rotation by matching the peaks between the original ACF and the ACF from the rotated image, for example using the so-called Hungarian algorithm.