STM32H7 - IAR Placing Local Variables into 'Reserved Memory' (0x1FF20000 - 0x1FFFFFFF) - stm32

I started a new project using an STM32H7, currently using IAR EWARM V8, used the STM32CUBEMX to generate the configuration code, and get an initial project going.
I worked through a couple of the CUBEMX eval projects to get some hardware verified and working, and am able to step through code fine.
But there is something odd going on, in particular with variables if you assign them as local vars within a function, somehow IAR is placing them into the 'System Reserved' memory range...
ie within 0x1FF20000 - 0x1FFFFFFF
For example... the project example 'FMC_NOR' that STM provides, is test code for testing our a NOR flash, etc..
they created these two small arrays as globals vars just at the top of the main.c file.
(buffer_size is 0x1000)
uint16_t aTxBuffer[BUFFER_SIZE] = {0};
uint16_t aRxBuffer[BUFFER_SIZE] = {0};
When in the global space, they are allocated in the DTCM region (0x2000:0000)
When moved as local vars, they then become allocated into the 'reserved space'...
What happens is, when IAR encounters any arrays like this, the processor faults with an 'imprecise data access' hardware fault.
This same error occurs with code to initialize the JPEG module, as it attempts to load the arrays of Huffman tables, etc...
When using TrueStudio this problem does not occur... CubeMX auto-generates the linker files for whichever compiler you are using.
I didn't specifically see anything in the linker files pointing to the reserved memory address.
So not sure what could be going on? I'm new to using this processor, so I'm just starting to understand it's memory mapping.
Thanks for any help or suggestions, I'd like to get IAR figured out, as so far I like it a bit over TrueStudio.

I solved my own question... so no longer need help on this...
This is in the 'stm32h743xx_flash.icf' generated by STM CUBEMX for the STM32H7...
/*-Sizes-*/
define symbol __ICFEDIT_size_cstack__ = 0x400;
define symbol __ICFEDIT_size_heap__ = 0x200;
/**** End of ICF editor section. ###ICF###*/
Bumped the 'size_cstack' up to 2k (0x800) and everything is fine...

Related

How do I add a missing peripheral register to a STM32 MCU model in Renode?

I am trying out this MCU / SoC emulator, Renode.
I loaded their existing model template under platforms/cpus/stm32l072.repl, which just includes the repl file for stm32l071 and adds one little thing.
When I then load & run a program binary built with STM32CubeIDE and ST's LL library, and the code hits the initial function of SystemClock_Config(), where the Flash:ACR register is being probed in a loop, to observe an expected change in value, it gets stuck there, as the Renode Monitor window is outputting:
[WARNING] sysbus: Read from an unimplemented register Flash:ACR (0x40022000), returning a value from SVD: 0x0
This seems to be expected, not all existing templates model nearly everything out of the box. I also found that the stm32L071 model is missing some of the USARTs and NVIC channels. I saw how, probably, the latter might be added, but there seems to be not a single among the default models defining that Flash:ACR register that I could use as example.
How would one add such a missing register for this particular MCU model?
Note1: For this test, I'm using a STM32 firmware binary which works as intended on actual hardware, e.g. a devboard for this MCU.
Note2:
The stated advantage of Renode over QEMU, which does apparently not emulate peripherals, is also allowing to stick together a more complex system, out of mocked external e.g. I2C and other devices (apparently C# modules, not yet looked into it).
They say "use the same binary as on the real system".
Which is my reason for trying this out - sounds like a lot of potential for implementing systems where the hardware is not yet fully available, and also automatted testing.
So the obvious thing, commenting out a lot of parts in init code, to only test some hardware-independent code while sidestepping such issues, would defeat the purpose here.
If you want to just provide the ACR register for the flash to pass your init, use a tag.
You can either provide it via REPL (recommended, like here https://github.com/renode/renode/blob/master/platforms/cpus/stm32l071.repl#L175) or via RESC.
Assuming that your software would like to read value 0xDEADBEEF. In the repl you'd use:
sysbus:
init:
Tag <0x40022000, 0x40022003> "ACR" 0xDEADBEEF
In the resc or in the Monitor it would be just:
sysbus Tag <0x40022000, 0x40022003> "ACR" 0xDEADBEEF
If you want more complex logic, you can use a Python peripheral, as described in the docs (https://renode.readthedocs.io/en/latest/basic/using-python.html#python-peripherals-in-a-platform-description):
flash: Python.PythonPeripheral # sysbus 0x40022000
size: 0x1000
initable: false
filename: "script_with_complex_python_logic.py"
```
If you really need advanced implementation, then you need to create a complete C# model.
As you correctly mentioned, we do not want you to modify your binary. But we're ok with mocking some parts we're not interested in for a particular use case if the software passes with these mocks.
Disclaimer: I'm one of the Renode developers.

ARM Eclipse debugging code in the RAM. Is it possible to see the source code`

I have a problem when try to debug the code which is copied to the SRAM and executed from there.
The code is overwriting the data - but it is done only during the system update. The sections where code is placed are correctly defined in the linker script file and the debuger correctly see the addresses. But when I step into the function (and the code in RAM is the correct one) it does not connect the source files with the code executed in the memory.
Do you know how can it be done. Debugging C code on the assembler level is not something which makes me happy :)
Any help appreciated.
The problem is a bit silly. When you call RAM function from the FLASH (the first call has to be done this way) it has to be done by the veneer. It was messing up the debugger. But having own calling macro (because of the distance it has to be done via the pointer) everything works fine
example calling macro.
#define RAMFCALL(func, ...) {unsigned (* volatile fptr)() = (unsigned (* volatile)())func; fptr(__VA_ARGS__);}

stm32f4 HardFault_Handler - need debugging advice

I'm working on a project based on the stm32f4discovery board using IAR Embedded Workbench (though I'm very close to the 32kb limit on the free version so I'll have to find something else soon). This is a learning project for me and so far I've been able to solve most of my issues with a few google searches and a lot of trial and error. But this is the first time I've encountered a run-time error that doesn't appear to be caused by a problem with my logic and I'm pretty stuck. Any general debugging strategy advice is welcome.
So here's what happens. I have an interrupt on a button; each time the button is pressed, the callback function runs my void cal_acc(uint16_t* data) function defined in stm32f4xx_it.c. This function gathers some data, and on the 6th press, it calls my void gn(float32_t* data, float32_t* beta) function. Eventually, two functions are called, gn_resids and gn_jacobian. The functions are very similar in structure. Both take in 3 pointers to 3 arrays of floats and then modify the values of the first array based on the second two. Unfortunately, when the second function gn_jacobian exits, I get the HardFault.
Please look at the link (code structure) for a picture showing how the program runs up to the fault.
Thank you very much! I appreciate any advice or guidance you can give me,
-Ben
Extra info that might be helpful below:
Running in debug mode, I can step into the function and run through all the lines click by click and it's OK. But as soon as I run the last line and it should exit and move on to the next line in the function where it was called, it crashes. I have also tried rearranging the order of the calls around this function and it is always this one that crashes.
I had been getting a similar crash on the first function gn_resids when one of the input pointers pointed to an array that was not defined as "static". But now all the arrays are static and I'm quite confused - especially since I can't tell what is different between the gn_resids function that works and the gn_jacobian function that does not work.
acc1beta is declared as a float array at the beginning of main.c and then also as extern float32_t acc1beta[6] at the top of stm32f4xx_it.c. I want it as a global variable; there is probably a better way to do this, but it's been working so far with many other variables defined in the same way.
Here's a screenshot of what I see when it crashes during debug (after I pause the session) IAR view at crash
EDIT: I changed the code of gn_step to look like this for a test so that it just runs gn_resids twice and it crashes as soon as it gets to the second call - I can't even step into it. gn_jacobian is not the problem.
void gn_step(float32_t* data, float32_t* beta) {
static float32_t resids[120];
gn_resids(resids, data, beta);
arm_matrix_instance_f32 R;
arm_mat_init_f32(&R, 120, 1, resids);
// static float32_t J_f32[720];
// gn_jacobian(J_f32, data, beta);
static float32_t J_f32[120];
gn_resids(J_f32, data, beta);
arm_matrix_instance_f32 J;
arm_mat_init_f32(&J, 120, 1, J_f32);
Hardfaults on Cortex M devices can be generated by various error conditions, for example:
Access of data outside valid memory
Invalid instructions
Division by zero
It is possible to gather information about the source of the hardfault by looking into some processor registers. IAR provides a debugger macro that helps to automate that process. It can be found in the IAR installation directory arm\config\debugger\ARM\vector_catch.mac. Please refer to this IAR Technical Note on Debugging Hardfaults for details on using this macro.
Depending on the type of the hardfault that occurs in your program you should try to narrow down the root cause within the debugger.

release build variable corruption when using ne10 math library assembly function

has anyone experience the following issue?
A stack variable getting changed/corrupted after calling ne10 assembly function such as ne10_len_vec2f_neon?
e.g
float gain = 8.0;
ne10_len_vec2f_neon(src, dst, len);
after the call to ne10_len_vec2f_neon, the value of gain changes as its memory is getting corrupted.
1. Note this only happens when the project is compiled in release build but not debug build.
2. Does Ne10 assembly functions preserve registers?
3. Replacing the assembly function call to c equivalent such as ne10_len_vec2f_c and both release and debug build seem to work OK.
thanks for any help on this. Not sure if there's an inherent issue within the program or it is really the call to ne10_len_vec2f_neon causing the corruption with release build.enter code here
I had a quick rummage through the master NEON code here:
https://github.com/projectNe10/Ne10/blob/master/modules/math/NE10_len.neon.s
... and it doesn't really touch address-based stack at all, so not sure it's a stack problem in memory.
However based on what I remember of the NEON procedure call standard q4-q7 (alias d8-d15 or s16-s31) should be preserved by the callee, and as far as I can tell that code is clobbering q4-6 without the necessary save/restore, so it does indeed look like it's clobbering the stack in registers.
In the failed case do you know if gain is still stored in FPU registers, and if yes which ones? If it's stored in any of s16/17/18/19 then this looks like the problem. It also seems plausible that a compiler would choose to use s16 upwards for things it needs to keep across a function call, as it avoids the need to touch in-RAM stack memory.
In terms of a fix, if you perform the following replacements:
s/q4/q8/
s/q5/q9/
s/q6/q10/
in that file, then I think it should work; no means to test here, but those higher register blocks are not callee saved.

MatLab error: cannot open with static TLS

Since a couple of days, I constantly receive the same error while using MATLAB which happens at some point with dlopen. I am pretty new to MATLAB, and that is why I don't know what to do. Google doesn't seem to be helping me either. When I try to make an eigenvector, I get this:
Error using eig
LAPACK loading error:
dlopen: cannot load any more object with static TLS
I also get this while making a multiplication:
Error using *
BLAS loading error:
dlopen: cannot load any more object with static TLS
I did of course look for the solutions to this problem, but I don't understand too much and don't know what to do. These are threads I found:
How do I use the BLAS library provided by MATLAB?
http://www.mathworks.de/de/help/matlab/matlab_external/calling-lapack-and-blas-functions-from-mex-files.html
Can someone help me please?
Examples of function calls demonstrating this error
>> randn(3,3)
ans =
2.7694 0.7254 -0.2050
-1.3499 -0.0631 -0.1241
3.0349 0.7147 1.4897
>> eig(ans)
Error using eig
LAPACK loading error:
dlopen: cannot load any more object with static TLS
That's bug no 961964 of MATLAB known since R2012b (8.0). MATLAB dynamically loads some libs with static TLS (thread local storage, e.g. see gcc compiler flag -ftls-model). Loading too many such libs => no space left.
Until now mathwork's only workaround is to load the important(!) libs first by using them early (they suggest to put "ones(10)*ones(10);" in startup.m). I better don't comment on this "solution strategy".
Since R2013b (8.2.0.701) with Linux x86_64 my experience is: Don't use "doc" (the graphical help system)! I think this doc-utility (libxul, etc.) is using a lot of static TLS memory.
Here is an update (2013/12/31)
All the following tests were done with Fedora 20 (with glibc-2.18-11.fc20) and Matlab 8.3.0.73043 (R2014a Prerelease).
For more information on TLS, see
Ulrich Drepper, ELF handling For Thread-Local Storage, Version 0.21, 2013,
currently available at Akkadia and Redhat.
What happens exactly?
MATLAB dynamically (with dlopen) loads several libraries that need tls initialization. All those libs need a slot in the dtv (dynamic thread vector). Because MATLAB loads several of these libs dynamically at runtime at compile/link time the linker (at mathworks) had no chance to count the slots needed (that's the important part). Now it's the task of the dynamic lib loader to handle such a case at runtime. But this is not easy. To cite dl-open.c:
For static TLS we have to allocate the memory here and
now. This includes allocating memory in the DTV. But we
cannot change any DTV other than our own. So, if we
cannot guarantee that there is room in the DTV we don't
even try it and fail the load.
There is a compile time constant (called DTV_SURPLUS, see glibc-source/sysdeps/generic/ldsodefs.h) in the glibc's dynamic lib loader for reserving a number of additional slots for such a mess (dynamically loading libs with static TLS in a multithreading program). In the glibc-Version of Fedora 20 this value is 14.
Here are the first libs (running MATLAB) that needed dtv slots in my case:
matlabroot/bin/glnxa64/libut.so
/lib64/libstdc++.so.6
/lib64/libpthread.so.0
matlabroot/bin/glnxa64/libunwind.so.8
/lib64/libuuid.so.1
matlabroot/sys/java/jre/glnxa64/jre/lib/amd64/server/libjvm.so
matlabroot/sys/java/jre/glnxa64/jre/lib/amd64/libfontmanager.so
matlabroot/sys/java/jre/glnxa64/jre/lib/amd64/libt2k.so
matlabroot/bin/glnxa64/mkl.so
matlabroot/sys/os/glnxa64/libiomp5.so
/lib64/libasound.so.2
matlabroot/sys/jxbrowser/glnxa64/xulrunner/xulrunner-linux-64/libxul.so
/lib64/libselinux.so.1
/lib64/libpixman-1.so.0
/lib64/libEGL.so.1
/lib64/libGL.so.1
/lib64/libglapi.so.0
Yes more than 14 => too many => no slot left in the dtv. That's what the error message tries to tell us and especially mathworks.
For the record: In order not to violate MATLAB's license I didn't debug, decompile or disassemble any part of the binaries shipped with MATLAB. I only debugged the free and open glibc-binaries of Fedora 20 that MATLAB were using to dynamically load the libs.
What can be done, to solve this problem?
There are 3 options:
(a)
Rebuild MATLAB and do not dynamically load those libs
(with initial-exec tls model) instead link against them (then the linker
can count the required slots!)
(b)
Rebuild those libs and ensure they are NOT using the initial-exec tls model.
(c)
Rebuild glibc and increase DTV_SURPLUS in
glibc/sysdeps/generic/ldsodefs.h
Obviously options (a) and (b) can only be done by mathworks.
For option (c) no source of MATLAB is needed and thus can be done without mathworks.
What is the status at mathworks?
I really tried to explain this to the "MathWorks Technical Support Department". But my impression is: they don't understand me. They closed my support ticket and suggested a telephone(!) conversation in January 2014 with a technical support manager.
I'll do my very best to explain this, but to be honest: I'm not very confident.
Update (2014/01/10): Currently mathworks is trying option (b).
Update (2014/03/19): For the file libiomp5.so you can download a newly compiled version (without static TLS) at mathworks, bug report 961964. And the other libs? No improvement there. So don't be suprised to get "dlopen: cannot load any more object with static TLS" with "doc", e.g. see bug report 1003952.
Restarting Matlab solved the problem for me.
long story short: in the directory that you start matlab from create a file
startup.m with content ones(10)*ones(10);. Restart matlab and it will be taken care of.
This is, as I find, an age-old problem yet unsolved by MathWorks.
Here are my two cents, which worked for me (when I wanted IT++ external libraries, with MEX).
Let the library that you found to be the cause of the problem be "libXYZ.so", and that you know where it lies on your system.
The solution is to inform MATLAB to load the specific library at the earliest of its startup. The reason for this error is apparently due to the lack of slots for this thread local storage aka tls purpose (due to they already been filled-up).
Because the latest compilations suddenly required a new library that was not loaded earlier during its startup, MATLAB throws up this error.
Pity that MATLAB never cared to resolve this problem so long.
Fortunately, the solution is a single, very simple terminal command.
Typical steps on a linux-machine should be as follows:
Open command prompt (Ctrl+Alt+T in Ubuntu)
Issue the following command
export LD_PRELOAD=<PATH-TO-libxyz.so>
e.g.: export LD_PRELOAD=/usr/local/lib/libitpp.so
Start matlab from the same terminal
matlab &
Running your program now should resolve the issue, as it is for my case.
Good luck!
Reference:
[1] http://au.mathworks.com/matlabcentral/answers/125117-openmp-mex-files-static-tls-problem
http://www.mathworks.de/support/bugreports/961964 has been updated on 30/01/2014.
There is a zip file attached with libiomp5.so
I tested it on Mageia 4 x86_64 with Matlab R2013b.
I can now use the Documentation of Matlab to open a demo without any problem.
I had the same problem and I think I just solved it.
When installing matlab use the custom installation (I did not do this the first time). Choose to create symbolic links to matlab scripts in the predefined folder (/usr/local/bin). This did the trick for me!
I had the same problem with both Matlab 2013b and Matlab 2014a. The fix provided by mathworks for libiomp5.so only removed the problem of LAPACK not working. However, I could not use external libraries which are using OpenMp (such as VL_FEAT): I still get the error
"dlopen: cannot load any more object with static TLS."
The only thing which worked for me was downgrading to Matlab 2012b.
I came across this problem after "bar" (for bar plots) with a an array gives me just a single blue block, with no errors thrown. Reboot at first solved the problem. But after a memory error (after processing a very large file), I just cannot get past this blue block problem.
Using "hist" on a matrix input gives me the "BLAS loading error" problem and led me to this thread. The Mathwork workaround fixed the hist and bar problems.
Just wanted to bring recognition to the extent of this bug's influence.
I had the same problem and solved it by increasing my Java Heap memory. Go to Preferences > General > Java-Heap Memory, and increase the allocated memory.
Increasing Java heap memory (to 512 mb) also worked for me on R2013b/Ubuntu 12.04. The "BLAS loading error" began when I processed an 11 GB file (with 16 GB RAM), and has not recurred after increasing java heap memory and restarting matlab.