Poly fold return type not inferred correctly - scala

I am trying to create a poly function that folds over a tuple of Foos:
case class Foo[A](a: A)
object extractFold extends Poly2 {
implicit def default[A, As <: HList]: Case.Aux[Foo[A], Foo[As], Foo[A :: As]] = {
???
}
}
def extract[In, A <: HList, B <: HList](keys: In)
(implicit
gen: Generic.Aux[In, A],
folder: RightFolder.Aux[A, Foo[HNil], extractFold.type, Foo[B]],
tupler: Tupler[B])
: Foo[tupler.Out] = {
???
}
val result = extract((Foo(1), Foo("a")))
The function works at runtime, but the compiler inferred result type is always Foo[Unit] which is not right - in this example it should be Foo[(Int, String)]

Why do you think that
the compiler inferred result type is always Foo[Unit]
?
The following code
import shapeless.ops.hlist.{RightFolder, Tupler}
import shapeless.{::, Generic, HList, HNil, Poly2}
import scala.reflect.runtime.universe.{typeOf, Type, TypeTag}
object App {
def getType[T: TypeTag](t: T): Type = typeOf[T]
case class Foo[A](a: A)
object extractFold extends Poly2 {
implicit def default[A, As <: HList]: Case.Aux[Foo[A], Foo[As], Foo[A :: As]] =
at { case (Foo(a), Foo(as)) => Foo(a :: as) }
}
def extract[In, A <: HList, B <: HList](keys: In)(implicit
gen: Generic.Aux[In, A],
folder: RightFolder.Aux[A, Foo[HNil], extractFold.type, Foo[B]],
tupler: Tupler[B]
): Foo[tupler.Out] =
Foo(tupler(folder(gen.to(keys), Foo(HNil)).a))
val result = extract((Foo(1), Foo("a")))
def main(args: Array[String]): Unit = {
println(
getType(result)
)
}
}
prints
App.Foo[(Int, java.lang.String)]
Moreover, if you change the line
val result: Foo[Unit] = extract((Foo(1), Foo("a")))
the code doesn't compile.
By the way, the same can be done with
import shapeless.PolyDefns.~>
import shapeless.ops.hlist.{Comapped, NatTRel, Tupler}
import shapeless.{Generic, HList, Id}
object App {
case class Foo[A](a: A)
def extract[In, A <: HList, B <: HList](keys: In)(implicit
gen: Generic.Aux[In, A],
comapped: Comapped.Aux[A, Foo, B],
natTRel: NatTRel[A, Foo, B, Id],
tupler: Tupler[B]
): Foo[tupler.Out] =
Foo(tupler(natTRel.map(new (Foo ~> Id) { def apply[T](foo: Foo[T]) = foo.a }, gen.to(keys))))
val result = extract((Foo(1), Foo("a")))
def main(args: Array[String]): Unit = {
println(result)//Foo((1,a))
}
}

Maybe someone with a better understanding of shapeless can provide you a better answer. According to my understanding the problem lies at the type inference step. If you specify all the types explicitly as in
val result: Foo[(Int, String)] = extract[(Foo[Int], Foo[String]),
Foo[Int] :: Foo[String] :: HNil,
Int :: String :: HNil]((Foo(1), Foo("a")))
the code correctly typechecks. Obviously you don't want to specify those types explicitly though.
According to my understanding the compiler can't infer good B and tupler.Out because they are not coupled tight enough to In and A. One way you can work this around is by introducing an intermediate trait like this:
trait Extractor[L <: HList, HF] {
type FR <: HList
type TR
val folder: RightFolder.Aux[L, Foo[HNil], HF, Foo[FR]]
val tupler: Tupler.Aux[FR, TR]
}
object Extractor {
type Aux[L <: HList, HF, FR0 <: HList, TR0] = Extractor[L, HF] {type FR = FR0; type TR = TR0}
implicit def wrap[L <: HList, In, HF, FR0 <: HList, TR0](implicit folder0: RightFolder.Aux[L, Foo[HNil], HF, Foo[FR0]],
tupler0: Tupler.Aux[FR0, TR0]) = new Extractor[L, HF] {
type FR = FR0
type TR = TR0
override val folder = folder0
override val tupler = tupler0
}
}
and then using it like this:
def extract[In, A <: HList, B <: HList, C](keys: In)
(implicit gen: Generic.Aux[In, A],
extractor: Extractor.Aux[A, extractFold.type, B, C])
: Foo[C] = {
val hli = gen.to(keys)
val fr = extractor.folder(hli, Foo(HNil))
Foo(extractor.tupler(fr.a))
}
This is a hacky solution but at least it seem to work (see also online demo).

Related

Scala case classes and recursive reflection

Given 2 Scala case classes
case class Bar(x: Int)
case class Foo(b: Bar, z: Double)
I have a piece of code that prints the types of Foo fields using reflection:
import scala.reflect.runtime.universe._
def f[T: TypeTag] = typeOf[T].members.filter(!_.isMethod)
and I call it like f[Foo] and f[Bar]. Calling the former returns a List[Type] as [Bar, Double].
How can I call f on the first element of the list? Equivalently, how can I print types recursively when Foo has a custom class Bar? Equivalently how can I get from Bar as Type a Bar.type?
Many thanks
You don't actually need the type variable T in f. You can define it like this (as Dima suggested in the comments):
def f(t: Type) =
t.members.filter(!_.isMethod).map(_.typeSignature)
To use this to recursively print a type:
def printTypesRecursive(t: Type, prefix: String = ""): Unit = {
println(prefix + t)
f(t).foreach(printTypesRecursive(_, prefix + " "))
}
printTypesRecursive(typeOf[Foo])
Output:
Foo
Double
Bar
Int
Equivalently how can I get from Bar as Type a Bar.type?
Bar.type is the type of companion object
Class companion object vs. case class itself
I need something like f[f[Foo].head]
I guess you have here some confusion between compile-time and runtime
Runtime vs. Compile time
You can call
def f[T: TypeTag] = typeOf[T].members.filter(!_.isMethod)
f[Foo]
//Scope{
// private[this] val z: <?>;
// private[this] val b: <?>
//}
if you know type T statically i.e. at compile time (earlier).
You can call
def f_dyn(tpe: Type) = tpe.members.filter(!_.isMethod)
f_dyn(typeOf[Foo])
//Scope{
// private[this] val z: <?>;
// private[this] val b: <?>
//}
if you know type tpe dynamically i.e. at runtime (later).
You can express f via f_dyn
def f[T: TypeTag] = f_dyn(typeOf[T])
def f_dyn(tpe: Type) = tpe.members.filter(!_.isMethod)
If you want to iterate the method (apply it recursively) then it should return something like it accepts, i.e. now this is types rather than symbols, so you need to add somewhere something like .typeSignature, .asMethod.returnType, .asType.toType. Also maybe now you're more interested in .decls rather than .members since you are not looking for inherited members. Also .decls returns field symbols in correct order on contrary to .members. Finally let it be better List[...] rather than raw Scope (.toList)
def f[T: TypeTag]: List[Type] = f_dyn(typeOf[T])
def f_dyn(tpe: Type): List[Type] =
tpe.decls.filter(!_.isMethod).map(_.typeSignature).toList
f_dyn(f[Foo].head) // List(Int)
f_dyn(f_dyn(typeOf[Foo]).head) // List(Int)
You can iterate f_dyn
f_dyn(typeOf[Foo]) // List(Bar, Double)
f_dyn(typeOf[Foo]).map(f_dyn) // List(List(Int), List())
f_dyn(typeOf[Foo]).map(f_dyn).map(_.map(f_dyn)) // List(List(List()), List())
If you really want to iterate f rather than f_dyn then the complication is that you can call f[T] for the second time only on a statically known type T but you have the type that is the result of the first call only at runtime, you don't have it at compile time. In principle you can use runtime compilation (creating new compile time inside runtime) although this can work slower than ordinary reflection and doesn't seem needed now
import scala.reflect.runtime.{currentMirror => rm}
import scala.tools.reflect.ToolBox // libraryDependencies += scalaOrganization.value % "scala-compiler" % scalaVersion.value
val tb = rm.mkToolBox()
// suppose f is defined in object App
tb.eval(q"App.f[${f[Foo].head}]") // List(Int)
tb.eval(q"""
import App._
f[${f[Foo].head}]
""")
// List(Int)
Now all the classes Foo, Bar... are defined at compile time so it would make sense to use compile-time reflection (macros) rather than runtime reflection
Getting Case Class definition which points to another Case Class
import scala.language.experimental.macros
import scala.reflect.macros.blackbox
def f[T]: List[String] = macro Macros.f_impl[T]
def f1[T]: List[List[String]] = macro Macros.f1_impl[T]
def f2[T]: List[List[List[String]]] = macro Macros.f2_impl[T]
class Macros(val c: blackbox.Context) {
import c.universe._
def f_dyn(tpe: Type): List[Type] =
tpe.decls.filter(!_.isMethod).map(_.typeSignature).toList
val ListObj = q"_root_.scala.List"
val ListT = tq"_root_.scala.List"
val StringT = tq"_root_.scala.Predef.String"
def f_impl[T: WeakTypeTag]: Tree = {
val types: List[Type] = f_dyn(weakTypeOf[T])
val typeStrings: List[String] = types.map(_.toString)
q"$ListObj.apply[$StringT](..$typeStrings)"
}
def f1_impl[T: WeakTypeTag]: Tree = {
val types: List[List[Type]] = f_dyn(weakTypeOf[T]).map(f_dyn)
val typeStrings: List[List[String]] = types.map(_.map(_.toString))
q"$ListObj.apply[$ListT[$StringT]](..$typeStrings)"
}
def f2_impl[T: WeakTypeTag]: Tree = {
val types: List[List[List[Type]]] =
f_dyn(weakTypeOf[T]).map(f_dyn).map(_.map(f_dyn))
val typeStrings: List[List[List[String]]] = types.map(_.map(_.map(_.toString)))
q"$ListObj.apply[$ListT[$ListT[$StringT]]](..$typeStrings)"
}
}
// in a different subproject
f[Foo]
//scalac: _root_.scala.List.apply[_root_.scala.Predef.String]("Bar", "Double")
f1[Foo]
//scalac: _root_.scala.List.apply[_root_.scala.List[_root_.scala.Predef.String]](scala.collection.immutable.List("Int"), scala.collection.immutable.List())
f2[Foo]
//scalac: _root_.scala.List.apply[_root_.scala.List[_root_.scala.List[_root_.scala.Predef.String]]](scala.collection.immutable.List(scala.collection.immutable.List()), scala.collection.immutable.List())
The runtime of macros (when they are expanded) is the compile time of main code.
Do macros support annotations too? like can I access my case class annotations with macros? with runtime reflection , i would do symbolOf[Foo].asClass.annotations
Yes, surely.
def foo[T]: Unit = macro fooImpl[T]
def fooImpl[T: c.WeakTypeTag](c: blackbox.Context): c.Tree = {
import c.universe._
println(symbolOf[T].asClass.annotations)
q"()"
}
class myAnnot extends StaticAnnotation
#myAnnot
case class Foo(b: Bar, z: Double)
symbolOf[Foo].asClass.annotations // at runtime: List(myAnnot)
foo[Foo]
// at compile time with scalacOptions += "-Ymacro-debug-lite":
// scalac: List(myAnnot)
One more option to perform compile-time calculations is to use one of libraries encapsulating work with macros e.g. Shapeless
// libraryDependencies += "com.chuusai" %% "shapeless" % "2.3.10"
import shapeless.{::, DepFn0, DepFn1, HList, HNil, Generic, Poly0, Poly1, Typeable, poly}
trait DeepGeneric[T <: Product] {
type Repr <: HList
def to(t: T): Repr
def from(r: Repr): T
}
object DeepGeneric {
type Aux[T <: Product, Repr0 <: HList] = DeepGeneric[T] {type Repr = Repr0}
def instance[T <: Product, Repr0 <: HList](f: T => Repr0, g: Repr0 => T): Aux[T, Repr0] = new DeepGeneric[T] {
override type Repr = Repr0
override def to(t: T): Repr = f(t)
override def from(r: Repr): T = g(r)
}
implicit def deepGeneric[A <: Product, L <: HList, L1 <: HList](implicit
generic: Generic.Aux[A, L],
hListDeepGeneric: HListDeepGeneric.Aux[L, L1]
): Aux[A, L1] = instance(a => hListDeepGeneric.to(generic.to(a)), l1 => generic.from(hListDeepGeneric.from(l1)))
}
trait HListDeepGeneric[T <: HList] {
type Repr <: HList
def to(t: T): Repr
def from(r: Repr): T
}
trait LowPriorityHListDeepGeneric {
type Aux[T <: HList, Repr0 <: HList] = HListDeepGeneric[T] {type Repr = Repr0}
def instance[T <: HList, Repr0 <: HList](f: T => Repr0, g: Repr0 => T): Aux[T, Repr0] = new HListDeepGeneric[T] {
override type Repr = Repr0
override def to(t: T): Repr = f(t)
override def from(r: Repr): T = g(r)
}
implicit def headNotCaseClass[H, T <: HList, T_hListDeepGen <: HList](implicit
tailHListDeepGeneric: HListDeepGeneric.Aux[T, T_hListDeepGen]
): Aux[H :: T, H :: T_hListDeepGen] = instance({
case h :: t => h :: tailHListDeepGeneric.to(t)
}, {
case h :: t => h :: tailHListDeepGeneric.from(t)
})
}
object HListDeepGeneric extends LowPriorityHListDeepGeneric {
implicit val hNil: Aux[HNil, HNil] = instance(identity, identity)
implicit def headCaseClass[H <: Product, T <: HList, H_deepGen <: HList, T_hListDeepGen <: HList](implicit
headDeepGeneric: DeepGeneric.Aux[H, H_deepGen],
tailHListDeepGeneric: HListDeepGeneric.Aux[T, T_hListDeepGen]
): Aux[H :: T, H_deepGen :: T_hListDeepGen] = instance({
case h :: t => headDeepGeneric.to(h) :: tailHListDeepGeneric.to(t)
}, {
case h :: t => headDeepGeneric.from(h) :: tailHListDeepGeneric.from(t)
})
}
trait DeepMapper[P <: Poly1, In <: HList] extends DepFn1[In] {
type Out <: HList
}
trait LowPriorityDeepMapper {
type Aux[P <: Poly1, In <: HList, Out0 <: HList] = DeepMapper[P, In] {type Out = Out0}
def instance[P <: Poly1, In <: HList, Out0 <: HList](f: In => Out0): Aux[P, In, Out0] = new DeepMapper[P, In] {
override type Out = Out0
override def apply(t: In): Out = f(t)
}
implicit def headNotHList[P <: Poly1, H, T <: HList](implicit
headCase: poly.Case1[P, H],
tailDeepMapper: DeepMapper[P, T]
): Aux[P, H :: T, headCase.Result :: tailDeepMapper.Out] =
instance(l => headCase(l.head) :: tailDeepMapper(l.tail))
}
object DeepMapper extends LowPriorityDeepMapper {
implicit def hNil[P <: Poly1]: Aux[P, HNil, HNil] = instance(_ => HNil)
// implicit def headHList[P <: Poly1, H <: HList, H_deepMap <: HList, T <: HList](implicit
// headDeepMapper: DeepMapper.Aux[P, H, H_deepMap],
// headCase: poly.Case1[P, H_deepMap], // apply poly one more time
// tailDeepMapper: DeepMapper[P, T]
// ): Aux[P, H :: T, headCase.Result :: tailDeepMapper.Out] =
// instance(l => headCase(headDeepMapper(l.head)) :: tailDeepMapper(l.tail))
implicit def headHList[P <: Poly1, H <: HList, T <: HList](implicit
headDeepMapper: DeepMapper[P, H], // don't apply poly one more time
tailDeepMapper: DeepMapper[P, T]
): Aux[P, H :: T, headDeepMapper.Out :: tailDeepMapper.Out] =
instance(l => headDeepMapper(l.head) :: tailDeepMapper(l.tail))
}
trait DeepFillWith[P <: Poly0, L <: HList] extends DepFn0 {
type Out = L
}
trait LowPriorityDeepFillWith {
def apply[P <: Poly0, L <: HList](implicit deepFillWith: DeepFillWith[P, L]): DeepFillWith[P, L] = deepFillWith
def instance[P <: Poly0, L <: HList](f: => L): DeepFillWith[P, L] = new DeepFillWith[P, L] {
override def apply(): L = f
}
implicit def headNotHList[P <: Poly0, H, T <: HList](implicit
headCase: poly.Case0.Aux[P, H],
tailDeepFillWith: DeepFillWith[P, T]
): DeepFillWith[P, H :: T] =
instance(headCase() :: tailDeepFillWith())
}
object DeepFillWith extends LowPriorityDeepFillWith {
implicit def hNil[P <: Poly0]: DeepFillWith[P, HNil] = instance(HNil)
implicit def headHList[P <: Poly0, H <: HList, T <: HList](implicit
headDeepFillWith: DeepFillWith[P, H],
tailDeepFillWith: DeepFillWith[P, T]
): DeepFillWith[P, H :: T] =
instance(headDeepFillWith() :: tailDeepFillWith())
}
// needed if DeepMapper "applies poly one more time",
// e.g. for field NAMES and types (via DeepLabelledGeneric), not just types (via DeepGeneric)
// trait LowPriorityTypeablePoly extends Poly1 {
// implicit def notHListCase[V](implicit typeable: Typeable[V]): Case.Aux[V, String] =
// at(_ => typeable.describe)
// }
//
// object typeablePoly extends LowPriorityTypeablePoly {
// implicit def hListCase[V <: HList]: Case.Aux[V, V] = at(identity)
// }
object typeablePoly extends Poly1 {
implicit def cse[A](implicit typeable: Typeable[A]): Case.Aux[A, String] =
at(_ => typeable.describe)
}
object nullPoly extends Poly0 {
implicit def cse[A]: Case0[A] = at(null.asInstanceOf[A])
}
def classFieldTypes[T <: Product] = new PartiallyApplied[T]
class PartiallyApplied[T <: Product] {
def apply[L <: HList]()(implicit
deepGeneric: DeepGeneric.Aux[T, L],
deepFillWith: DeepFillWith[nullPoly.type, L],
deepMapper: DeepMapper[typeablePoly.type, L],
): deepMapper.Out = deepMapper(deepFillWith())
}
classFieldTypes[Bar]() // Int :: HNil
classFieldTypes[Foo]() // (Int :: HNil) :: Double :: HNil
Generic/LabelledGeneric/DeepGeneric, Mapper/DeepMapper, FillWith/DeepFillWith, Typeable are type classes.
lets say for each Type I want the code to behave differently, if Double do x, if Int do y.
You can use types comparisons t =:= typeOf[Double], t <:< typeOf[Double] if you use runtime/compile-time reflection or you can keep using type classes and polymorphic functions
trait MyTypeclass[T] {
def apply(): Unit
}
object MyTypeclass {
implicit val double: MyTypeclass[Double] = () => println("do x")
implicit val int: MyTypeclass[Int] = () => println("do y")
implicit def caseClass[T <: Product, L <: HList](implicit
deepGeneric: DeepGeneric.Aux[T, L],
deepFillWith: DeepFillWith[nullPoly.type, L],
deepMapper: DeepMapper[myPoly.type, L]
): MyTypeclass[T] = () => deepMapper(deepFillWith())
}
object myPoly extends Poly1 {
implicit def cse[T: MyTypeclass]: Case.Aux[T, Unit] = at(_ => foo)
}
def foo[T](implicit tc: MyTypeclass[T]): Unit = tc()
foo[Int]
// do y
foo[Double]
// do x
foo[Foo]
// do y
// do x
foo[Bar]
// do y
Shapeless is also capable of handling annotations
import shapeless.Annotation
implicitly[Annotation[myAnnot, Foo]].apply() // myAnnot#1a3869f4

Shapeless lenses strange behavior

I am trying to convert my case class into a sequence containing a lens for each field. I've created the following simplified example to highlight the problem that I am having.
The following code will give a runtime error:
import shapeless._
case class Testing(field1: String, field2: Double)
val lenses = Seq(0,1).map(i => lens[Testing] >> i)
whereas the following does not:
import shapeless._
case class Testing(field1: String, field2: Double)
val lens1 = lens[Testing] >> 0
val lens2 = lens[Testing] >> 1
val lenses = Seq(lens1, lens2)
The actual error reads "Expression i does not evaluate to a non-negative Int literal".
I feel like this error message is misleading since the code val lens3 = lens[Testing] >> 2 (i.e. accessing one field too many) would give the same error message.
Has anyone experienced behaviour like this in shapeless? And is there an easier way to extract element lenses for each field in my Case Class into a sequence (i.e. not like #lenses in monocle where you still need to access each lens using the field name)?
lens[Testing] >> 0
lens[Testing] >> 1
are implicitly transformed to
lens[Testing] >> Nat._0
lens[Testing] >> Nat._1
and this works but
val lenses = Seq(0,1).map(i => lens[Testing] >> i)
or val lenses = Seq(Nat._0,Nat._1).map(i => lens[Testing] >> i) doesn't.
Seq(Nat._0,Nat._1) has type Seq[Nat], so i has type Nat (rather than specific Nat._0, Nat._1) and this is too rough.
The following approach with constructing HList of lenses (rather than Seq) seems to work:
import shapeless.{::, Generic, HList, HNil, Lens, MkHListSelectLens}
case class Testing(field1: String, field2: Double)
trait MkLensHlist[A] {
type Out <: HList
def apply(): Out
}
object MkLensHlist {
type Aux[A, Out0 <: HList] = MkLensHlist[A] { type Out = Out0 }
def instance[L, Out0 <: HList](x: Out0): Aux[L, Out0] = new MkLensHlist[L] {
override type Out = Out0
override def apply(): Out0 = x
}
def apply[A](implicit instance: MkLensHlist[A]): instance.Out = instance()
implicit def mk[A, L <: HList, Out <: HList](implicit
gen: Generic.Aux[A, L],
apply: ApplyMkHListSelectLens.Aux[L, Out]
): Aux[A, Out] = instance(apply())
}
trait ApplyMkHListSelectLens[L <: HList] {
type Out <: HList
def apply(): Out
}
object ApplyMkHListSelectLens {
type Aux[L <: HList, Out0 <: HList] = ApplyMkHListSelectLens[L] { type Out = Out0}
def instance[L <: HList, Out0 <: HList](x: Out0): Aux[L, Out0] = new ApplyMkHListSelectLens[L] {
override type Out = Out0
override def apply(): Out0 = x
}
implicit def mk[L <: HList, Out <: HList](implicit
apply: ApplyMkHListSelectLens1.Aux[L, L, Out]
): Aux[L, Out] =
instance(apply())
}
trait ApplyMkHListSelectLens1[L <: HList, L1 <: HList] {
type Out <: HList
def apply(): Out
}
object ApplyMkHListSelectLens1 {
type Aux[L <: HList, L1 <: HList, Out0 <: HList] = ApplyMkHListSelectLens1[L, L1] { type Out = Out0}
def instance[L <: HList, L1 <: HList, Out0 <: HList](x: Out0): Aux[L, L1, Out0] = new ApplyMkHListSelectLens1[L, L1] {
override type Out = Out0
override def apply(): Out0 = x
}
implicit def mk1[L <: HList, H, T <: HList, Out <: HList](implicit
lens: MkHListSelectLens[L, H],
apply: Aux[L, T, Out]
): Aux[L, H :: T, Lens[L, H] :: Out] =
instance(lens() :: apply())
implicit def mk2[L <: HList]: Aux[L, HNil, HNil] =
instance(HNil)
}
MkLensHlist[Testing]
// shapeless.MkHListSelectLens$$anon$36$$anon$17#340f438e :: shapeless.MkHListSelectLens$$anon$36$$anon$17#30c7da1e :: HNil

how to use shapeless to detect field type annotation

I am trying to gather the fields of a case class that have a particular annotations at compile time using shapeless. I tried to play around the following snippet, but it did not work as expected (output nothing instead of printing "i"). How can I make it work ?
import shapeless._
import shapeless.labelled._
final class searchable() extends scala.annotation.StaticAnnotation
final case class Foo(#searchable i: Int, s: String)
trait Boo[A] {
def print(a: A): Unit
}
sealed trait Boo0 {
implicit def hnil = new Boo[HNil] { def print(hnil: HNil): Unit = () }
implicit def hlist[K <: Symbol, V, RL <: HList](implicit b: Boo[RL]): Boo[FieldType[K, V] :: RL] =
new Boo[FieldType[K, V] :: RL] {
def print(a: FieldType[K, V] :: RL): Unit = {
b.print(a.tail)
}
}
}
sealed trait Boo1 extends Boo0 {
implicit def hlist1[K <: Symbol, V, RL <: HList](implicit annot: Annotation[searchable, K], witness: Witness.Aux[K], b: Boo[RL]): Boo[FieldType[K, V] :: RL] =
new Boo[FieldType[K, V] :: RL] {
def print(a: FieldType[K, V] :: RL): Unit = {
Console.println(witness.value.name)
b.print(a.tail)
}
}
}
object Boo extends Boo1 {
implicit def generics[A, HL <: HList](implicit iso: LabelledGeneric.Aux[A, HL], boo: Boo[HL]): Boo[A] =
new Boo[A] {
def print(a: A): Unit = {
boo.print(iso.to(a))
}
}
}
implicitly[Boo[Foo]].print(Foo(1, "2"))
Looking at the macro of Annotation, it rejects type that is not a product or coproduct straight up
val annTreeOpts =
if (isProduct(tpe)) { ... }
else if (isCoproduct(tpe)) { ... }
else abort(s"$tpe is not case class like or the root of a sealed family of types")
this is quite unfortunate, as collecting type annotations at per field symbol level could be quite useful sometimes.
There is another type class Annotations defined in the same file that can actually collect particular annotations on field into an HList. However problem is the field information is totally lost. There is a clumsy way to hack things together to serve my use case...
// A is our annotation
// B is our result type
// C is our case class with some fields annotated with A
def empty: B = ???
def concat(b1: B, b2: B): B = ???
def func(a: A, nm: String): B = ???
object Collector extends Poly2 {
implicit def some[K <: Symbol](implicit witness: Witness.Aux[K]) =
at[B, (K, Some[A])] { case (b, (_, a)) => concat(b, func(a.get, witness.value.name)) }
implicit def none[K <: Symbol] = at[B, (K, None.type)] { case (b, _) => b }
}
def collect[HL <: HList, RL <: HList, KL <: HList, ZL <: HList](implicit
iso: LabelledGeneric.Aux[C, HL]
, annot: Annotations.Aux[A, C, RL]
, keys: Keys.Aux[HL, KL]
, zip: Zip.Aux[KL :: RL :: HNil, ZL]
, leftFolder: LeftFolder.Aux[ZL, B, Collector.type, B]): B = {
zip(keys() :: annot() :: HNil).foldLeft(empty)(Collector)
}

Merging HList elements

I have a simple service definition
trait Service[-Req, +Rep] extends (Req => Future[Rep]) {
def apply(request: Req): Future[Rep]
}
and a method how to chain services:
implicit class ServiceOps1[Req, RepIn](service: Service[Req, RepIn]) {
def -->[RepOut](next: Service[RepIn, RepOut]): Service[Req, RepOut] =
(req: Req) => service(req) flatMap next
}
I would like to put all my service (in assumption that they could be composed) into HList and then build from HList a composition of service.
Here is my Resolver
trait Resolver[L <: HList, In] {
type Out
def apply(l: L): Service[In, Out]
}
object Resolver {
def apply[L <: HList, In](implicit resolver: Resolver[L, In]): Aux[L, In, resolver.Out] = resolver
type Aux[L <: HList, In, Out0] = Resolver[L, In] { type Out = Out0 }
implicit def hsingleResolver[I, O, S <: Service[I, O]]: Aux[S :: HNil, I, O] =
new Resolver[S :: HNil, I] {
type Out = O
def apply(l : S :: HNil): Service[I, Out] = l.head
}
implicit def hlistResolver[I, O, S <: Service[I, O], T <: HList](implicit res : Resolver[T, O]): Aux[S :: T, I, res.Out] =
new Resolver[S :: T, I] {
type Out = res.Out
def apply(l: S :: T): Service[I, res.Out] = l.head --> res(l.tail)
}
}
I have a service
object S extends Service[Int, String] {
def apply(request: Int): Future[String] = Future successful request.toString
}
When I try to resolve the simple chain
implicitly[Resolver[S.type :: HNil, Int]].apply(S :: HNil)
I got an implicit not found error.
The problem lies in the type signature of your implicits: implicit def hsingleResolver[I, O, S <: Service[I, O]]: Aux[S :: HNil, I, O]. Here because of S <: Service[I, O] you expect O to be inferred based on the type of S, but unfortunately that's not how it works. The S <: Service[I, O] clause in the type parameter list is not taken into consideration for inferring the type arguments. What happens when you invoke implicitly[Resolver[S.type :: HNil, Int]] is that the compiler sees that S = S.type, I = Int and O is unknown so O = Nothing. Then afterwards it goes on to check that S <: Service[Int,Nothing] which is false and implicit search fails.
So to fix this you have to make the fact that S <: Service[I, O] part of the implicit search/type inference process. For instance in one of these ways:
implicit def hsingleResolver[I, O, S](implicit ev: S <:< Service[I,O]): Aux[S :: HNil, I, O] // option 1
implicit def hsingleResolver[I, O, S]: Aux[(S with Service[I,O]) :: HNil, I, O] // option 2
As a side note: wouldn't it make more sense to define Resolver in the following way?
trait Resolver[L <: HList] {
type In
type Out
def apply(l: L): Service[In, Out]
}
object Resolver {
def apply[L <: HList](implicit resolver: Resolver[L]): Aux[L, resolver.In, resolver.Out] = resolver
type Aux[L <: HList, In0, Out0] = Resolver[L] { type In = In0; type Out = Out0 }
...
}
Because In is also dependent on L, just like Out.
Not sure why this was down voted, maybe you could have made a sample repo available. Anyway, here's a partial answer, maybe this get's you back on track.
1) enable debug options for implicits in your build.sbt: scalacOptions += "-Xlog-implicits"
2) define a resolver for HNil: implicit def hNilResolver[I]: Aux[HNil, I, HNil] = ???
3) following the debug output, fix the remainder :)

How do I best construct a shapeless record with a default value?

Say I have a shapeless record:
trait T
case object Ti extends T
case object Ta extends T
case object To extends T
type R = Record.`Ta -> Option[String], Ti -> Option[Int]`.T
val r: R = (Ta ->> Option("plif")) :: (Ti ->> Option(4)) :: HNil
I'd like to write a function get such that:
get(Ta) == Some("plif")
get(Ti) == Some(4)
get(To) == None
What would be the best way to achieve this?
A simple solution is to provide your own Selector instance for a default case:
class DefaultSelector[R <: HList, K] extends Selector[R, K] {
type Out = Option[Nothing]
def apply(l: R): Out = None
}
def get[K, V](k: K)(
implicit sel: Selector[R, K] = new DefaultSelector[R, K]
): sel.Out = sel(r)
But with that code Scala's compiler may have difficulties providing TypeTags for the result of the default case.
So to fix that you can also write a new typeclass DefaultSelector, which will default to None: Option[Nothing], if no Selector is found:
import shapeless._
import shapeless.ops.record._
trait DefaultSelector[R <: HList, K] {
type Out
def apply(r: R): Out
}
sealed trait LowPriorityDefaultSelector {
type Aux[R <: HList, K, V] = DefaultSelector[R, K] { type Out = V }
case class Impl[R <: HList, K, V](get: R => V) extends DefaultSelector[R, K] {
type Out = V
def apply(r: R): Out = get(r)
}
implicit def default[R <: HList, K, V](
implicit ev: Option[Nothing] =:= V // tricking Scala's implicit resolution
): Aux[R, K, V] =
Impl[R, K, V](Function.const(None))
}
object DefaultSelector extends LowPriorityDefaultSelector {
implicit def existing[R <: HList, K, V](
implicit sel: Selector.Aux[R, K, V]
): Aux[R, K, V] =
Impl[R, K, V](sel.apply)
}
Then the get function becomes:
def get[K, V](k: K)(implicit sel: DefaultSelector[R, K]): sel.Out = sel(r)
And the result (for both solutions) is:
scala> get(Ti)
res0: Option[Int] = Some(4)
scala> get(Ta)
res1: Option[String] = Some(plif)
scala> get(To)
res2: Option[Nothing] = None