Merging HList elements - scala

I have a simple service definition
trait Service[-Req, +Rep] extends (Req => Future[Rep]) {
def apply(request: Req): Future[Rep]
}
and a method how to chain services:
implicit class ServiceOps1[Req, RepIn](service: Service[Req, RepIn]) {
def -->[RepOut](next: Service[RepIn, RepOut]): Service[Req, RepOut] =
(req: Req) => service(req) flatMap next
}
I would like to put all my service (in assumption that they could be composed) into HList and then build from HList a composition of service.
Here is my Resolver
trait Resolver[L <: HList, In] {
type Out
def apply(l: L): Service[In, Out]
}
object Resolver {
def apply[L <: HList, In](implicit resolver: Resolver[L, In]): Aux[L, In, resolver.Out] = resolver
type Aux[L <: HList, In, Out0] = Resolver[L, In] { type Out = Out0 }
implicit def hsingleResolver[I, O, S <: Service[I, O]]: Aux[S :: HNil, I, O] =
new Resolver[S :: HNil, I] {
type Out = O
def apply(l : S :: HNil): Service[I, Out] = l.head
}
implicit def hlistResolver[I, O, S <: Service[I, O], T <: HList](implicit res : Resolver[T, O]): Aux[S :: T, I, res.Out] =
new Resolver[S :: T, I] {
type Out = res.Out
def apply(l: S :: T): Service[I, res.Out] = l.head --> res(l.tail)
}
}
I have a service
object S extends Service[Int, String] {
def apply(request: Int): Future[String] = Future successful request.toString
}
When I try to resolve the simple chain
implicitly[Resolver[S.type :: HNil, Int]].apply(S :: HNil)
I got an implicit not found error.

The problem lies in the type signature of your implicits: implicit def hsingleResolver[I, O, S <: Service[I, O]]: Aux[S :: HNil, I, O]. Here because of S <: Service[I, O] you expect O to be inferred based on the type of S, but unfortunately that's not how it works. The S <: Service[I, O] clause in the type parameter list is not taken into consideration for inferring the type arguments. What happens when you invoke implicitly[Resolver[S.type :: HNil, Int]] is that the compiler sees that S = S.type, I = Int and O is unknown so O = Nothing. Then afterwards it goes on to check that S <: Service[Int,Nothing] which is false and implicit search fails.
So to fix this you have to make the fact that S <: Service[I, O] part of the implicit search/type inference process. For instance in one of these ways:
implicit def hsingleResolver[I, O, S](implicit ev: S <:< Service[I,O]): Aux[S :: HNil, I, O] // option 1
implicit def hsingleResolver[I, O, S]: Aux[(S with Service[I,O]) :: HNil, I, O] // option 2
As a side note: wouldn't it make more sense to define Resolver in the following way?
trait Resolver[L <: HList] {
type In
type Out
def apply(l: L): Service[In, Out]
}
object Resolver {
def apply[L <: HList](implicit resolver: Resolver[L]): Aux[L, resolver.In, resolver.Out] = resolver
type Aux[L <: HList, In0, Out0] = Resolver[L] { type In = In0; type Out = Out0 }
...
}
Because In is also dependent on L, just like Out.

Not sure why this was down voted, maybe you could have made a sample repo available. Anyway, here's a partial answer, maybe this get's you back on track.
1) enable debug options for implicits in your build.sbt: scalacOptions += "-Xlog-implicits"
2) define a resolver for HNil: implicit def hNilResolver[I]: Aux[HNil, I, HNil] = ???
3) following the debug output, fix the remainder :)

Related

Scala case classes and recursive reflection

Given 2 Scala case classes
case class Bar(x: Int)
case class Foo(b: Bar, z: Double)
I have a piece of code that prints the types of Foo fields using reflection:
import scala.reflect.runtime.universe._
def f[T: TypeTag] = typeOf[T].members.filter(!_.isMethod)
and I call it like f[Foo] and f[Bar]. Calling the former returns a List[Type] as [Bar, Double].
How can I call f on the first element of the list? Equivalently, how can I print types recursively when Foo has a custom class Bar? Equivalently how can I get from Bar as Type a Bar.type?
Many thanks
You don't actually need the type variable T in f. You can define it like this (as Dima suggested in the comments):
def f(t: Type) =
t.members.filter(!_.isMethod).map(_.typeSignature)
To use this to recursively print a type:
def printTypesRecursive(t: Type, prefix: String = ""): Unit = {
println(prefix + t)
f(t).foreach(printTypesRecursive(_, prefix + " "))
}
printTypesRecursive(typeOf[Foo])
Output:
Foo
Double
Bar
Int
Equivalently how can I get from Bar as Type a Bar.type?
Bar.type is the type of companion object
Class companion object vs. case class itself
I need something like f[f[Foo].head]
I guess you have here some confusion between compile-time and runtime
Runtime vs. Compile time
You can call
def f[T: TypeTag] = typeOf[T].members.filter(!_.isMethod)
f[Foo]
//Scope{
// private[this] val z: <?>;
// private[this] val b: <?>
//}
if you know type T statically i.e. at compile time (earlier).
You can call
def f_dyn(tpe: Type) = tpe.members.filter(!_.isMethod)
f_dyn(typeOf[Foo])
//Scope{
// private[this] val z: <?>;
// private[this] val b: <?>
//}
if you know type tpe dynamically i.e. at runtime (later).
You can express f via f_dyn
def f[T: TypeTag] = f_dyn(typeOf[T])
def f_dyn(tpe: Type) = tpe.members.filter(!_.isMethod)
If you want to iterate the method (apply it recursively) then it should return something like it accepts, i.e. now this is types rather than symbols, so you need to add somewhere something like .typeSignature, .asMethod.returnType, .asType.toType. Also maybe now you're more interested in .decls rather than .members since you are not looking for inherited members. Also .decls returns field symbols in correct order on contrary to .members. Finally let it be better List[...] rather than raw Scope (.toList)
def f[T: TypeTag]: List[Type] = f_dyn(typeOf[T])
def f_dyn(tpe: Type): List[Type] =
tpe.decls.filter(!_.isMethod).map(_.typeSignature).toList
f_dyn(f[Foo].head) // List(Int)
f_dyn(f_dyn(typeOf[Foo]).head) // List(Int)
You can iterate f_dyn
f_dyn(typeOf[Foo]) // List(Bar, Double)
f_dyn(typeOf[Foo]).map(f_dyn) // List(List(Int), List())
f_dyn(typeOf[Foo]).map(f_dyn).map(_.map(f_dyn)) // List(List(List()), List())
If you really want to iterate f rather than f_dyn then the complication is that you can call f[T] for the second time only on a statically known type T but you have the type that is the result of the first call only at runtime, you don't have it at compile time. In principle you can use runtime compilation (creating new compile time inside runtime) although this can work slower than ordinary reflection and doesn't seem needed now
import scala.reflect.runtime.{currentMirror => rm}
import scala.tools.reflect.ToolBox // libraryDependencies += scalaOrganization.value % "scala-compiler" % scalaVersion.value
val tb = rm.mkToolBox()
// suppose f is defined in object App
tb.eval(q"App.f[${f[Foo].head}]") // List(Int)
tb.eval(q"""
import App._
f[${f[Foo].head}]
""")
// List(Int)
Now all the classes Foo, Bar... are defined at compile time so it would make sense to use compile-time reflection (macros) rather than runtime reflection
Getting Case Class definition which points to another Case Class
import scala.language.experimental.macros
import scala.reflect.macros.blackbox
def f[T]: List[String] = macro Macros.f_impl[T]
def f1[T]: List[List[String]] = macro Macros.f1_impl[T]
def f2[T]: List[List[List[String]]] = macro Macros.f2_impl[T]
class Macros(val c: blackbox.Context) {
import c.universe._
def f_dyn(tpe: Type): List[Type] =
tpe.decls.filter(!_.isMethod).map(_.typeSignature).toList
val ListObj = q"_root_.scala.List"
val ListT = tq"_root_.scala.List"
val StringT = tq"_root_.scala.Predef.String"
def f_impl[T: WeakTypeTag]: Tree = {
val types: List[Type] = f_dyn(weakTypeOf[T])
val typeStrings: List[String] = types.map(_.toString)
q"$ListObj.apply[$StringT](..$typeStrings)"
}
def f1_impl[T: WeakTypeTag]: Tree = {
val types: List[List[Type]] = f_dyn(weakTypeOf[T]).map(f_dyn)
val typeStrings: List[List[String]] = types.map(_.map(_.toString))
q"$ListObj.apply[$ListT[$StringT]](..$typeStrings)"
}
def f2_impl[T: WeakTypeTag]: Tree = {
val types: List[List[List[Type]]] =
f_dyn(weakTypeOf[T]).map(f_dyn).map(_.map(f_dyn))
val typeStrings: List[List[List[String]]] = types.map(_.map(_.map(_.toString)))
q"$ListObj.apply[$ListT[$ListT[$StringT]]](..$typeStrings)"
}
}
// in a different subproject
f[Foo]
//scalac: _root_.scala.List.apply[_root_.scala.Predef.String]("Bar", "Double")
f1[Foo]
//scalac: _root_.scala.List.apply[_root_.scala.List[_root_.scala.Predef.String]](scala.collection.immutable.List("Int"), scala.collection.immutable.List())
f2[Foo]
//scalac: _root_.scala.List.apply[_root_.scala.List[_root_.scala.List[_root_.scala.Predef.String]]](scala.collection.immutable.List(scala.collection.immutable.List()), scala.collection.immutable.List())
The runtime of macros (when they are expanded) is the compile time of main code.
Do macros support annotations too? like can I access my case class annotations with macros? with runtime reflection , i would do symbolOf[Foo].asClass.annotations
Yes, surely.
def foo[T]: Unit = macro fooImpl[T]
def fooImpl[T: c.WeakTypeTag](c: blackbox.Context): c.Tree = {
import c.universe._
println(symbolOf[T].asClass.annotations)
q"()"
}
class myAnnot extends StaticAnnotation
#myAnnot
case class Foo(b: Bar, z: Double)
symbolOf[Foo].asClass.annotations // at runtime: List(myAnnot)
foo[Foo]
// at compile time with scalacOptions += "-Ymacro-debug-lite":
// scalac: List(myAnnot)
One more option to perform compile-time calculations is to use one of libraries encapsulating work with macros e.g. Shapeless
// libraryDependencies += "com.chuusai" %% "shapeless" % "2.3.10"
import shapeless.{::, DepFn0, DepFn1, HList, HNil, Generic, Poly0, Poly1, Typeable, poly}
trait DeepGeneric[T <: Product] {
type Repr <: HList
def to(t: T): Repr
def from(r: Repr): T
}
object DeepGeneric {
type Aux[T <: Product, Repr0 <: HList] = DeepGeneric[T] {type Repr = Repr0}
def instance[T <: Product, Repr0 <: HList](f: T => Repr0, g: Repr0 => T): Aux[T, Repr0] = new DeepGeneric[T] {
override type Repr = Repr0
override def to(t: T): Repr = f(t)
override def from(r: Repr): T = g(r)
}
implicit def deepGeneric[A <: Product, L <: HList, L1 <: HList](implicit
generic: Generic.Aux[A, L],
hListDeepGeneric: HListDeepGeneric.Aux[L, L1]
): Aux[A, L1] = instance(a => hListDeepGeneric.to(generic.to(a)), l1 => generic.from(hListDeepGeneric.from(l1)))
}
trait HListDeepGeneric[T <: HList] {
type Repr <: HList
def to(t: T): Repr
def from(r: Repr): T
}
trait LowPriorityHListDeepGeneric {
type Aux[T <: HList, Repr0 <: HList] = HListDeepGeneric[T] {type Repr = Repr0}
def instance[T <: HList, Repr0 <: HList](f: T => Repr0, g: Repr0 => T): Aux[T, Repr0] = new HListDeepGeneric[T] {
override type Repr = Repr0
override def to(t: T): Repr = f(t)
override def from(r: Repr): T = g(r)
}
implicit def headNotCaseClass[H, T <: HList, T_hListDeepGen <: HList](implicit
tailHListDeepGeneric: HListDeepGeneric.Aux[T, T_hListDeepGen]
): Aux[H :: T, H :: T_hListDeepGen] = instance({
case h :: t => h :: tailHListDeepGeneric.to(t)
}, {
case h :: t => h :: tailHListDeepGeneric.from(t)
})
}
object HListDeepGeneric extends LowPriorityHListDeepGeneric {
implicit val hNil: Aux[HNil, HNil] = instance(identity, identity)
implicit def headCaseClass[H <: Product, T <: HList, H_deepGen <: HList, T_hListDeepGen <: HList](implicit
headDeepGeneric: DeepGeneric.Aux[H, H_deepGen],
tailHListDeepGeneric: HListDeepGeneric.Aux[T, T_hListDeepGen]
): Aux[H :: T, H_deepGen :: T_hListDeepGen] = instance({
case h :: t => headDeepGeneric.to(h) :: tailHListDeepGeneric.to(t)
}, {
case h :: t => headDeepGeneric.from(h) :: tailHListDeepGeneric.from(t)
})
}
trait DeepMapper[P <: Poly1, In <: HList] extends DepFn1[In] {
type Out <: HList
}
trait LowPriorityDeepMapper {
type Aux[P <: Poly1, In <: HList, Out0 <: HList] = DeepMapper[P, In] {type Out = Out0}
def instance[P <: Poly1, In <: HList, Out0 <: HList](f: In => Out0): Aux[P, In, Out0] = new DeepMapper[P, In] {
override type Out = Out0
override def apply(t: In): Out = f(t)
}
implicit def headNotHList[P <: Poly1, H, T <: HList](implicit
headCase: poly.Case1[P, H],
tailDeepMapper: DeepMapper[P, T]
): Aux[P, H :: T, headCase.Result :: tailDeepMapper.Out] =
instance(l => headCase(l.head) :: tailDeepMapper(l.tail))
}
object DeepMapper extends LowPriorityDeepMapper {
implicit def hNil[P <: Poly1]: Aux[P, HNil, HNil] = instance(_ => HNil)
// implicit def headHList[P <: Poly1, H <: HList, H_deepMap <: HList, T <: HList](implicit
// headDeepMapper: DeepMapper.Aux[P, H, H_deepMap],
// headCase: poly.Case1[P, H_deepMap], // apply poly one more time
// tailDeepMapper: DeepMapper[P, T]
// ): Aux[P, H :: T, headCase.Result :: tailDeepMapper.Out] =
// instance(l => headCase(headDeepMapper(l.head)) :: tailDeepMapper(l.tail))
implicit def headHList[P <: Poly1, H <: HList, T <: HList](implicit
headDeepMapper: DeepMapper[P, H], // don't apply poly one more time
tailDeepMapper: DeepMapper[P, T]
): Aux[P, H :: T, headDeepMapper.Out :: tailDeepMapper.Out] =
instance(l => headDeepMapper(l.head) :: tailDeepMapper(l.tail))
}
trait DeepFillWith[P <: Poly0, L <: HList] extends DepFn0 {
type Out = L
}
trait LowPriorityDeepFillWith {
def apply[P <: Poly0, L <: HList](implicit deepFillWith: DeepFillWith[P, L]): DeepFillWith[P, L] = deepFillWith
def instance[P <: Poly0, L <: HList](f: => L): DeepFillWith[P, L] = new DeepFillWith[P, L] {
override def apply(): L = f
}
implicit def headNotHList[P <: Poly0, H, T <: HList](implicit
headCase: poly.Case0.Aux[P, H],
tailDeepFillWith: DeepFillWith[P, T]
): DeepFillWith[P, H :: T] =
instance(headCase() :: tailDeepFillWith())
}
object DeepFillWith extends LowPriorityDeepFillWith {
implicit def hNil[P <: Poly0]: DeepFillWith[P, HNil] = instance(HNil)
implicit def headHList[P <: Poly0, H <: HList, T <: HList](implicit
headDeepFillWith: DeepFillWith[P, H],
tailDeepFillWith: DeepFillWith[P, T]
): DeepFillWith[P, H :: T] =
instance(headDeepFillWith() :: tailDeepFillWith())
}
// needed if DeepMapper "applies poly one more time",
// e.g. for field NAMES and types (via DeepLabelledGeneric), not just types (via DeepGeneric)
// trait LowPriorityTypeablePoly extends Poly1 {
// implicit def notHListCase[V](implicit typeable: Typeable[V]): Case.Aux[V, String] =
// at(_ => typeable.describe)
// }
//
// object typeablePoly extends LowPriorityTypeablePoly {
// implicit def hListCase[V <: HList]: Case.Aux[V, V] = at(identity)
// }
object typeablePoly extends Poly1 {
implicit def cse[A](implicit typeable: Typeable[A]): Case.Aux[A, String] =
at(_ => typeable.describe)
}
object nullPoly extends Poly0 {
implicit def cse[A]: Case0[A] = at(null.asInstanceOf[A])
}
def classFieldTypes[T <: Product] = new PartiallyApplied[T]
class PartiallyApplied[T <: Product] {
def apply[L <: HList]()(implicit
deepGeneric: DeepGeneric.Aux[T, L],
deepFillWith: DeepFillWith[nullPoly.type, L],
deepMapper: DeepMapper[typeablePoly.type, L],
): deepMapper.Out = deepMapper(deepFillWith())
}
classFieldTypes[Bar]() // Int :: HNil
classFieldTypes[Foo]() // (Int :: HNil) :: Double :: HNil
Generic/LabelledGeneric/DeepGeneric, Mapper/DeepMapper, FillWith/DeepFillWith, Typeable are type classes.
lets say for each Type I want the code to behave differently, if Double do x, if Int do y.
You can use types comparisons t =:= typeOf[Double], t <:< typeOf[Double] if you use runtime/compile-time reflection or you can keep using type classes and polymorphic functions
trait MyTypeclass[T] {
def apply(): Unit
}
object MyTypeclass {
implicit val double: MyTypeclass[Double] = () => println("do x")
implicit val int: MyTypeclass[Int] = () => println("do y")
implicit def caseClass[T <: Product, L <: HList](implicit
deepGeneric: DeepGeneric.Aux[T, L],
deepFillWith: DeepFillWith[nullPoly.type, L],
deepMapper: DeepMapper[myPoly.type, L]
): MyTypeclass[T] = () => deepMapper(deepFillWith())
}
object myPoly extends Poly1 {
implicit def cse[T: MyTypeclass]: Case.Aux[T, Unit] = at(_ => foo)
}
def foo[T](implicit tc: MyTypeclass[T]): Unit = tc()
foo[Int]
// do y
foo[Double]
// do x
foo[Foo]
// do y
// do x
foo[Bar]
// do y
Shapeless is also capable of handling annotations
import shapeless.Annotation
implicitly[Annotation[myAnnot, Foo]].apply() // myAnnot#1a3869f4

Shapeless lenses strange behavior

I am trying to convert my case class into a sequence containing a lens for each field. I've created the following simplified example to highlight the problem that I am having.
The following code will give a runtime error:
import shapeless._
case class Testing(field1: String, field2: Double)
val lenses = Seq(0,1).map(i => lens[Testing] >> i)
whereas the following does not:
import shapeless._
case class Testing(field1: String, field2: Double)
val lens1 = lens[Testing] >> 0
val lens2 = lens[Testing] >> 1
val lenses = Seq(lens1, lens2)
The actual error reads "Expression i does not evaluate to a non-negative Int literal".
I feel like this error message is misleading since the code val lens3 = lens[Testing] >> 2 (i.e. accessing one field too many) would give the same error message.
Has anyone experienced behaviour like this in shapeless? And is there an easier way to extract element lenses for each field in my Case Class into a sequence (i.e. not like #lenses in monocle where you still need to access each lens using the field name)?
lens[Testing] >> 0
lens[Testing] >> 1
are implicitly transformed to
lens[Testing] >> Nat._0
lens[Testing] >> Nat._1
and this works but
val lenses = Seq(0,1).map(i => lens[Testing] >> i)
or val lenses = Seq(Nat._0,Nat._1).map(i => lens[Testing] >> i) doesn't.
Seq(Nat._0,Nat._1) has type Seq[Nat], so i has type Nat (rather than specific Nat._0, Nat._1) and this is too rough.
The following approach with constructing HList of lenses (rather than Seq) seems to work:
import shapeless.{::, Generic, HList, HNil, Lens, MkHListSelectLens}
case class Testing(field1: String, field2: Double)
trait MkLensHlist[A] {
type Out <: HList
def apply(): Out
}
object MkLensHlist {
type Aux[A, Out0 <: HList] = MkLensHlist[A] { type Out = Out0 }
def instance[L, Out0 <: HList](x: Out0): Aux[L, Out0] = new MkLensHlist[L] {
override type Out = Out0
override def apply(): Out0 = x
}
def apply[A](implicit instance: MkLensHlist[A]): instance.Out = instance()
implicit def mk[A, L <: HList, Out <: HList](implicit
gen: Generic.Aux[A, L],
apply: ApplyMkHListSelectLens.Aux[L, Out]
): Aux[A, Out] = instance(apply())
}
trait ApplyMkHListSelectLens[L <: HList] {
type Out <: HList
def apply(): Out
}
object ApplyMkHListSelectLens {
type Aux[L <: HList, Out0 <: HList] = ApplyMkHListSelectLens[L] { type Out = Out0}
def instance[L <: HList, Out0 <: HList](x: Out0): Aux[L, Out0] = new ApplyMkHListSelectLens[L] {
override type Out = Out0
override def apply(): Out0 = x
}
implicit def mk[L <: HList, Out <: HList](implicit
apply: ApplyMkHListSelectLens1.Aux[L, L, Out]
): Aux[L, Out] =
instance(apply())
}
trait ApplyMkHListSelectLens1[L <: HList, L1 <: HList] {
type Out <: HList
def apply(): Out
}
object ApplyMkHListSelectLens1 {
type Aux[L <: HList, L1 <: HList, Out0 <: HList] = ApplyMkHListSelectLens1[L, L1] { type Out = Out0}
def instance[L <: HList, L1 <: HList, Out0 <: HList](x: Out0): Aux[L, L1, Out0] = new ApplyMkHListSelectLens1[L, L1] {
override type Out = Out0
override def apply(): Out0 = x
}
implicit def mk1[L <: HList, H, T <: HList, Out <: HList](implicit
lens: MkHListSelectLens[L, H],
apply: Aux[L, T, Out]
): Aux[L, H :: T, Lens[L, H] :: Out] =
instance(lens() :: apply())
implicit def mk2[L <: HList]: Aux[L, HNil, HNil] =
instance(HNil)
}
MkLensHlist[Testing]
// shapeless.MkHListSelectLens$$anon$36$$anon$17#340f438e :: shapeless.MkHListSelectLens$$anon$36$$anon$17#30c7da1e :: HNil

Writing a typeclass with selection dependent on context bound

My initial code:
sealed trait Adder[L <: HList, U] extends DepFn2[L, Vector[U]]
object Adder {
def apply[L <: HList, U: Ordering](implicit adder: Adder[L, U]): Aux[L, U, adder.Out] = adder
type Aux[L <: HList, U, Out0] = Adder[L, U] { type Out = Out0 }
implicit def found[T <: HList, U: Ordering]: Aux[Vector[U] :: T, U, Vector[U] :: T] =
new Adder[Vector[U] :: T, U] {
type Out = Vector[U] :: T
def apply(l: Vector[U] :: T, collection: Vector[U]): Out = {
(l.head ++ collection).sorted :: l.tail
}
}
implicit def notFound[H, T <: HList, U: Ordering, OutT <: HList](implicit ut: Aux[T, U, OutT]): Aux[H :: T, U, H :: OutT] =
new Adder[H :: T, U] {
type Out = H :: OutT
def apply(l: H :: T, collection: Vector[U]): Out = {
val outT = ut(l.tail, collection)
l.head :: outT
}
}
implicit def empty[U: Ordering]: Aux[HNil, U, Vector[U] :: HNil] =
new Adder[HNil, U] {
type Out = Vector[U] :: HNil
def apply(l: HNil, collection: Vector[U]): Out = collection :: HNil
}
}
I found a bug where things that don't have the context bound
Ordering, the type is passed via notFound instead of found,
which is in hinsight not suprising. I tried to fix the bug by adding
another implicit which should trigger when there is no Ordering:
implicit def foundNoOrdering[T <: HList, U]: Aux[Vector[U] :: T, U, Vector[U] :: T] =
new Adder[Vector[U] :: T, U] {
type Out = Vector[U] :: T
def apply(l: Vector[U] :: T, collection: Vector[U]): Out = {
l.head ++ collection :: l.tail
}
}
However, this results in an ambiguous implicit between the
foundNoOrdering and found. How can I have different code paths
dependent on if there is an Ordering or not?
The standard trick is to reduce the priority by putting the implicit in an ancestor trait
object Adder extends LowPriorityAdderImplicits {
implicit def found...
}
trait LowPriorityAdderImplicits {
implicit def foundNoOrdering....
}
You will find a few of those in the standard library. LowPriorityImplicits seems to be customary in the name.
In the specification:
SLS §7.2 Implicit parameters
If there are several eligible arguments which match the implicit
parameter’s type, a most specific one will be chosen using the rules
of static overloading resolution (§6.26.3)
SLS §6.26.3 : The relevant bit is too long to cite in full, but you have something about
A class or object C is derived from a class or object D if one of the
following holds:
• C is a subclass of D, or
• C is a companion object of a class derived from D, or
• D is a companion object of a class from which C is derived.
and there being derived making it more specific and getting priority in resolution. I believe that one was made just for implicit.

Do a covariant filter on an HList

I intend to filter on an HList in a covariant manner - I would like to include subclasses as well. So the covariant filter on Foo should capture elements of Foo as well as Bar. I've constructed this example trying out <:!<, to see if it does what I would like it to do.
http://scastie.org/6465
/***
scalaVersion := "2.11.2"
libraryDependencies ++= Seq(
"com.chuusai" %% "shapeless" % "2.0.0"
)
*/
import shapeless._
final class HListOps[L <: HList](l: L) {
trait CoFilter[L <: HList, U] extends DepFn1[L] { type Out <: HList }
object CoFilter {
def apply[L <: HList, U](implicit filter: CoFilter[L, U]): Aux[L, U, filter.Out] = filter
type Aux[L <: HList, U, Out0 <: HList] = CoFilter[L, U] { type Out = Out0 }
implicit def hlistCoFilterHNil[L <: HList, U]: Aux[HNil, U, HNil] =
new CoFilter[HNil, U] {
type Out = HNil
def apply(l: HNil): Out = HNil
}
implicit def hlistCoFilter1[L <: HList, H](implicit f: CoFilter[L, H]): Aux[H :: L, H, H :: f.Out] =
new CoFilter[H :: L, H] {
type Out = H :: f.Out
def apply(l: H :: L): Out = l.head :: f(l.tail)
}
implicit def hlistCoFilter2[H, L <: HList, U](implicit f: CoFilter[L, U], e: U <:!< H): Aux[H :: L, U, f.Out] =
new CoFilter[H :: L, U] {
type Out = f.Out
def apply(l: H :: L): Out = f(l.tail)
}
}
def covariantFilter[U](implicit filter: CoFilter[L, U]): filter.Out = filter(l)
}
object Main extends App {
class Foo(val foo: Int)
class Bar(val bar: Int) extends Foo(bar)
val l = new Foo(1) :: new Bar(2) :: new Foo(3) :: new Bar(4) :: HNil
implicit def hlistOps[L <: HList](l: L): HListOps[L] = new HListOps(l)
print(l.covariantFilter[Bar] != l)
}
Gives me
[error] /tmp/rendererbI8Iwy0InO/src/main/scala/test.scala:47: could not find implicit value for parameter filter: _1.CoFilter[shapeless.::[Main.Foo,shapeless.::[Main.Bar,shapeless.::[Main.Foo,shapeless.::[Main.Bar,shapeless.HNil]]]],Main.Bar]
[error] print(l.covariantFilter[Bar] != l)
There are a couple of issues here. The first is that your type class is defined inside of your extension class, but you need the instance at the point where you're calling covariantFilter. Maybe the compiler could find it for you, but it doesn't. It's a lot cleaner not to nest the type class anyway, though.
The second issue is that your two hlistCoFilterN cases don't actually capture all the stuff you want. You only tell the compiler what to do in cases where the type of the head is the filter type and where the filter type is not a subtype of the type of the head. What about where the type of the head is a subtype of the filter type? You probably want something like this:
import shapeless._
trait CoFilter[L <: HList, U] extends DepFn1[L] { type Out <: HList }
object CoFilter {
def apply[L <: HList, U](implicit f: CoFilter[L, U]): Aux[L, U, f.Out] = f
type Aux[L <: HList, U, Out0 <: HList] = CoFilter[L, U] { type Out = Out0 }
implicit def hlistCoFilterHNil[L <: HList, U]: Aux[HNil, U, HNil] =
new CoFilter[HNil, U] {
type Out = HNil
def apply(l: HNil): Out = HNil
}
implicit def hlistCoFilter1[U, H <: U, T <: HList]
(implicit f: CoFilter[T, U]): Aux[H :: T, U, H :: f.Out] =
new CoFilter[H :: T, U] {
type Out = H :: f.Out
def apply(l: H :: T): Out = l.head :: f(l.tail)
}
implicit def hlistCoFilter2[U, H, T <: HList]
(implicit f: CoFilter[T, U], e: H <:!< U): Aux[H :: T, U, f.Out] =
new CoFilter[H :: T, U] {
type Out = f.Out
def apply(l: H :: T): Out = f(l.tail)
}
}
implicit final class HListOps[L <: HList](val l: L) {
def covariantFilter[U](implicit filter: CoFilter[L, U]): filter.Out = filter(l)
}
(For the record, you could also remove the H <:!< U constraint and move hlistCoFilter2 to a LowPriorityCoFilter trait. I find this version a little clearer about its intent, but getting rid of the constraint would arguably be cleaner.)
Now if you have the following:
class Foo(val foo: Int)
class Bar(val bar: Int) extends Foo(bar)
val l = new Foo(1) :: new Bar(2) :: new Foo(3) :: new Bar(4) :: HNil
Your filter will work like this:
scala> l.covariantFilter[Foo] == l
res0: Boolean = true
scala> l.covariantFilter[Bar] == l
res1: Boolean = false
Which I think is what you want.

How to implement zipWithIndex on HLists

Writting algorithm on HList, I need a zipWithIndex function. It is not at the shapeless library by now, so I decided to implement it.
It is quite obvious that it might be implemented as
hlist.zip(indexes)
where indexes is the HList of the indexes (0..n), that probably could be obtained this way:
val indexes = Nat._0 until hlist.length
Issue here is that Nat doesn't have until method. I haven't found any Witness for the HList index to use with HList.map.
What is the method I could use to obtain HList of Nats starting with Nat._0 till hlist.length?
It might make sense to add something like this to Shapeless:
import shapeless._, ops.hlist.Prepend
trait Range[A <: Nat, B <: Nat] extends DepFn0 { type Out <: HList }
object Range {
type Aux[A <: Nat, B <: Nat, Out0 <: HList] = Range[A, B] { type Out = Out0 }
implicit def emptyRange[A <: Nat]: Aux[A, A, HNil] = new Range[A, A] {
type Out = HNil
def apply(): Out = HNil
}
implicit def slightlyBiggerRange[A <: Nat, B <: Nat, OutAB <: HList](implicit
rangeAB: Aux[A, B, OutAB],
appender: Prepend[OutAB, B :: HNil],
witnessB: Witness.Aux[B]
): Aux[A, Succ[B], appender.Out] = new Range[A, Succ[B]] {
type Out = appender.Out
def apply(): Out = appender(rangeAB(), witnessB.value :: HNil)
}
}
def range[A <: Nat, B <: Nat](implicit r: Range[A, B]): r.Out = r()
Now you can write zipWithIndex pretty cleanly:
import ops.hlist.{ Length, Zip }
def zipWithIndex[L <: HList, S <: Nat, R <: HList, Out <: HList](l: L)(implicit
len: Length.Aux[L, S],
range: Range.Aux[nat._0, S, R],
zipper: Zip.Aux[L :: R :: HNil, Out]
): Out = l.zip(range())
And then:
import nat._
type Expected = (Int, _0) :: (Symbol, _1) :: (String, _2) :: HNil
val xs: Expected = zipWithIndex(1 :: 'a :: "foo" :: HNil)
You could also use a fold or a ZippedWithIndex[L <: HList] type class, both of which might be a little more concise, but less clearly composed out of independently useful pieces like Range.