PCIe TLP write packet address only 31:2 bits - cpu-architecture

Let's take a sample write packet : Suppose that the CPU wrote the
value 0x12345678 to the physical address 0xfdaff040 using 32-bit
addressing
This example is from this site (I didn't understand the explanations in the original post)
Why does the address start at the second bit [31 : 2]
Why isn't the address the same

An address of an aligned, 32-bit chunk always has two zero bits at the end of the address. You can think of this as either writing the address of the chunk to the 32-bit slot or as writing the addresses divided by four to bits 2 through 31 of the address. The result is the same either way since dividing by four is equivalent to shifting two bit positions to the right.

Related

How to understand the physical address in this example?

The image is relating to an example of translating in virtual memory. The address of phys. mem. starts from 0x000 ~ 0x0FC, then moves start 0x100 ~ 0x1FC and so on. Why don't it go like 0x000 ~ 0x0FF, and then 0x100 ~ 0x1FF etc. What are the two lowest bits stand for?
Thank you for your answers. This photo came from MIT open course, and they didn't reveal more details about the address. But I finally figured it out in the later example of the courses.
The two lowest bits can always be zero as the following example:
Supports that we have:
4GB of MM size.
64 lines of cache.
ONLY 1 WORD = 4 bytes PER CACHE LINE.
The address have 32 bits because of 4GB of MM.
The partial address defining the line have 6 bits because of 64 lines of cache.
And because the cache size is 2^6*4B
=> The tag have 24 bits (log2(4GB/2^8B))
=> The lowest bits have 2(32 - 24 - 6) bits.
Because there is only a word per block so that the lowest bits, which act as a data boundary(This is what the course said), are always 0.

memory segmentaion and segment registers

I do not understand memory segmentation very well , if we have memory of 1MB the segmentation make it segments of 64KB , is this right?
so is there specific segment for every segment register(CS,DS,SS,ES) and can not be changed ?
image for helping understand question
I guess you're referring to the old real mode of x86.
The values in the segment registers are not strictly static. The idea is that you had 16 bits of architectural address space in the x86, but this was very limiting (64 KB), yet 20 bits of physical address space. Typical addresses would be 16 bits, but addresses in a segment register would be the most significant 16 bits of a 20-bit address. This means they must exist on a 2^4=16-bit boundary. The hardware would then pretend the segment register is a 20-bit base address and the other address (e.g. address of an instruction) is treated as an offset.
Edit: One thing you might be asking is if the segments are mutually exclusive. The segments could overlap partially or completely. This made them quite powerful and quite dangerous.

word size and data bus

I am confused about the definition of word size. I read that the word size of a processor is its data bus width. Like an 8 bit processor has an 8 bit wide data bus. I recently read that the maximum size of the virtual address space is determined by word size i.e. if the word size is n bits the max virtual address space is 2^n -1. But I always thought that maximum virtual address space is determined by address bus width i.e. an n bits wide address bus can address maximum 2^n bytes. So, what is true?
Also, is this related to pointers as an n bit data bus is capable of carrying only an n bit address. So, maximum 2^n bytes can be accessed via pointers.
I'll first say that some of your confusion probably comes from the fact that things were simpler a few decades ago and your understanding of terms is based on these simpler machines.
I am confused about the definition of word size.I read that the word size of a processor is its data bus width. Like an 8 bit processor has an 8 bit wide data bus.
Definitely not. Data bus with is completely unrelated to this. The word size (which has never really been a precise term) of a processor is best loosely defined as the largest natural size for arithmetic which is generally the size of the registers in the machine. This is quite frequently the width of the data path (which is distinctly different from the data bus). The data path is simply the width of the ALUs. The word size is often the same as the pointer size.
I recently read that the maximum size of the virtual address space is determined by word size i.e. if the word size is n bits the max virtual address space is 2^n -1. But i always thought that maximum virtual address space is determined by address bus width i.e. an n bits wide address bus can address maximum 2^n bytes. So, what is true?
No. The size of the virtual address space is simply determined by the number of bits in the virtual page number of the page table (and the TLB). On current amd64 based machines, only 48 bits of the virtual address are useable. The upper 16 are a sign extension of bit 47. On current amd64 machines, the physical address size is 52 bits. These physical address bits are the ones that are sent on the bus. Though even the term bus is really incorrect. Almost all links are point-to-point (DDRx DRAM is an exception) and use a packetized format (header + payload) instead of address wires and data wires.
Also, is this related to pointers as an n bit data bus is capable of carrying only an n bit address. So, maximum 2^n bytes can be accessed via pointers.
Many (almost all even) machines that have a separate address bus, use an address bus that is narrower than the the number of address bits. These bits are simply split up and sent across the bus using multiple clock cycles. DDRx DRAM is another example of this.
the maximum size of the virtual address space is determined by word size
This used to be true, but certain extensions were made to bypass this limitation (namely Physical Address Extension, or PAE) which enables such things as 36 bit memory addresses.
Aside from that, wikipedia defines a word as:
the natural unit of data used by a particular processor design
In almost all cases, this is 32 bits on 32 bit systems and 64 bits on 64 bit systems. You will still frequently find references to 32 bit words on 64 bit systems (partially because amd64 is an extension of intel x86 rather than a revision). Also, as a holdover from the earlier days of modern computing, you will frequently see 32 bit quantities referred to as a DWORD or double word, and 64 bit ones as a QWORD or quad word.
This is something people fight about all the time. I personally use the definition of word size == bus width.

Why do x86-64 systems have only a 48 bit virtual address space?

In a book I read the following:
32-bit processors have 2^32 possible addresses, while current 64-bit processors have a 48-bit address space
My expectation was that if it's a 64-bit processor, the address space should also be 2^64.
So I was wondering what is the reason for this limitation?
Because that's all that's needed. 48 bits give you an address space of 256 terabyte. That's a lot. You're not going to see a system which needs more than that any time soon.
So CPU manufacturers took a shortcut. They use an instruction set which allows a full 64-bit address space, but current CPUs just only use the lower 48 bits. The alternative was wasting transistors on handling a bigger address space which wasn't going to be needed for many years.
So once we get near the 48-bit limit, it's just a matter of releasing CPUs that handle the full address space, but it won't require any changes to the instruction set, and it won't break compatibility.
Any answer referring to the bus size and physical memory is slightly mistaken, since OP's question was about virtual address space not physical address space. For example the supposedly analogous limit on some 386's was a limit on the physical memory they could use, not the virtual address space, which was always a full 32 bits. In principle you could use a full 64 bits of virtual address space even with only a few MB of physical memory; of course you could do so by swapping, or for specialized tasks where you want to map the same page at most addresses (e.g. certain sparse-data operations).
I think the real answer is that AMD was just being cheap and hoped nobody would care for now, but I don't have references to cite.
Read the limitations section of the wikipedia article:
A PC cannot contain 4 petabytes of memory (due to the size of current memory chips if nothing else) but AMD envisioned large servers, shared memory clusters, and other uses of physical address space that might approach this in the foreseeable future, and the 52 bit physical address provides ample room for expansion while not incurring the cost of implementing 64-bit physical addresses
That is, there's no point implementing full 64 bit addressing at this point, because we can't build a system that could utilize such an address space in full - so we pick something that's practical for today's (and tomorrow's) systems.
The internal native register/operation width does not need to be reflected in the external address bus width.
Say you have a 64 bit processor which only needs to access 1 megabyte of RAM. A 20 bit address bus is all that is required. Why bother with the cost and hardware complexity of all the extra pins that you won't use?
The Motorola 68000 was like this; 32 bit internally, but with a 23 bit address bus (and a 16 bit data bus). The CPU could access 16 megabytes of RAM, and to load the native data type (32 bits) took two memory accesses (each bearing 16 bits of data).
There is a more severe reason than just saving transistors in the CPU address path: if you increase the size of the address space you need to increase the page size, increase the size of the page tables, or have a deeper page table structure (that is more levels of translation tables). All of these things increase the cost of a TLB miss, which hurts performance.
From my point of view, this is result from the page size.Each page at most contains 4096/8 =512 entries of page table. And 2^9 =512. So 9 * 4 + 12=48.
Many people have this misconception. But I am promising to you if you read this carefully, after reading this all your misconceptions will be cleart.
To say a processor 32 bit or 64 bit doesn't signify it should have 32 bit address bus or 64 bit address bus respectively!...I repeat it DOESN'T!!
32 bit processor means it has 32 bit ALU (Arithmetic and Logic Unit)...that means it can operate on 32 bit binary operand (or simply saying a binary number having 32 digits) and similarly 64 bit processor can operate on 64 bit binary operand. So weather a processor 32 bit or 64 bit DOESN'T signify the maximum amount of memory can be installed. They just show how large the operand can be...(for analogy you can think of a 10-digit calculator can calculate results upto 10 digits...it cannot give us 11 digits or any other bigger results... although it is in decimal but I am telling this analogy for simplicity)...but what you are saying is address space that is the maximum directly interfaceable size of memory (RAM). The RAM's maximum possible size is determined by the size of the address bus and it is not the size of the data bus or even ALU on which the processor's size is defined (32/64 bit). Yes if a processor has 32 bit "Address bus" then it is able to address 2^32 byte=4GB of RAM (or for 64 bit it will be 2^64)...but saying a processor 32 bit or 64 bit has nothing relevance to this address space (address space=how far it can access to the memory or the maximum size of RAM) and it is only depended on the size of its ALU. Of course data bus and address bus may be of same sized and then it may seem that 32 bit processor means it will access 2^32 byte or 4 GB memory...but it is a coincidence only and it won't be the same for all....for example intel 8086 is a 16 bit processor (as it has 16 bit ALU) so as your saying it should have accessed to 2^16 byte=64 KB of memory but it is not true. It can access upto 1 MB of memory for having 20 bit address bus....You can google if you have any doubts:)
I think I have made my point clear.Now coming to your question...as 64 bit processor doesn't mean that it must have 64 bit address bus so there is nohing wrong of having a 48 bit address bus in a 64 bit processor...they kept the address space smaller to make the design and fabrication cheap....as nobody gonna use such a big memory (2^64 byte)...where 2^48 byte is more than enough nowadays.
To answer the original question: There was no need to add more than 48 Bits of PA.
Servers need the maximum amount of memory, so let's try to dig deeper.
1) The largest (commonly used) server configuration is an 8 Socket system. An 8S system is nothing but 8 Server CPU's connected by a high speed coherent interconnect (or simply, a high speed "bus") to form a single node. There are larger clusters out there but they are few and far between, we are talking commonly used configurations here. Note that in the real world usages, 2 Socket system is one of the most commonly used servers, and 8S is typically considered very high end.
2) The main types of memory used by servers are byte addressable regular DRAM memory (eg DDR3/DDR4 memory), Memory Mapped IO - MMIO (such as memory used by an add-in card), as well as Configuration Space used to configure the devices that are present in the system. The first type of memory is the one that are usually the biggest (and hence need the biggest number of address bits). Some high end servers use a large amount of MMIO as well depending on what the actual configuration of the system is.
3) Assume each server CPU can house 16 DDR4 DIMMs in each slot. With a maximum size DDR4 DIMM of 256GB. (Depending on the version of server, this number of possible DIMMs per socket is actually less than 16 DIMMs, but continue reading for the sake of the example).
So each socket can theoretically have 16*256GB=4096GB = 4 TB.
For our example 8S system, the DRAM size can be a maximum of 4*8= 32 TB. This means that
the max number of bits needed to address this DRAM space is 45 (=log2 32TB/log2 2).
We wont go into the details of the other types of memory (MMIO, MMCFG etc), but the point here is that the most "demanding" type of memory for an 8 Socket system with the largest types of DDR4 DIMMs available today (256 GB DIMMs) use only 45 bits.
For an OS that supports 48 bits (WS16 for example), there are (48-45=) 3 remaining bits.
Which means that if we used the lower 45 bits solely for 32TB of DRAM, we still have 2^3 times of addressable memory which can be used for MMIO/MMCFG for a total of 256 TB of addressable space.
So, to summarize:
1) 48 bits of Physical address is plenty of bits to support the largest systems of today that are "fully loaded" with copious amounts of DDR4 and also plenty of other IO devices that demand MMIO space. 256TB to be exact.
Note that this 256TB address space (=48bits of physical address) does NOT include any disk drives like SATA drives because they are NOT part of the address map, they only include the memory that is byte-addressable, and is exposed to the OS.
2) CPU hardware may choose to implement 46, 48 or > 48 bits depending on the generation of the server. But another important factor is how many bits does the OS recognize.
Today, WS16 supports 48 bit Physical addresses (=256 TB).
What this means to the user is, even though one has a large, ultra modern server CPU that can support >48 bits of addressing, if you run an OS that only supports 48 bits of PA, then you can only take advantage of 256 TB.
3) All in all, there are two main factors to take advantage of higher number of address bits (= more memory capacity).
a) How many bits does your CPU HW support? (This can be determined by CPUID instruction in Intel CPUs).
b) What OS version are you running and how many bits of PA does it recognize/support.
The min of (a,b) will ultimately determine the amount of addressable space your system can take advantage of.
I have written this response without looking into the other responses in detail. Also, I have not delved in detail into the nuances of MMIO, MMCFG and the entirety of the address map construction. But I do hope this helps.
Thanks,
Anand K Enamandram,
Server Platform Architect
Intel Corporation
It's not true that only the low-order 48 bits of a 64 bit VA are used, at least with Intel 64. The upper 16 bits are used, sort of, kind of.
Section 3.3.7.1 Canonical Addressing in the Intel® 64 and IA-32 Architectures Software Developer’s Manual says:
a canonical address must have bits 63 through 48 set to zeros or ones (depending on whether bit 47 is a zero or one)
So bits 47 thru 63 form a super-bit, either all 1 or all 0. If an address isn't in canonical form, the implementation should fault.
On AArch64, this is different. According to the ARMv8 Instruction Set Overview, it's a 49-bit VA.
The AArch64 memory translation system supports a 49-bit virtual address (48 bits per translation table). Virtual addresses are sign- extended from 49 bits, and stored within a 64-bit pointer. Optionally, under control of a system register, the most significant 8 bits of a 64-bit pointer may hold a “tag” which will be ignored when used as a load/store address or the target of an indirect branch
A CPU is considered "N-bits" mainly upon its data-bus size, and upon big part of it's entities (internal architecture): Registers, Accumulators, Arithmetic-Logic-Unit (ALU), Instruction Set, etc. For example: The good old Motorola 6800 (or Intel 8050) CPU is a 8-bits CPU. It has a 8-bits data-bus, 8-bits internal architecture, & a 16-bits address-bus.
Although N-bits CPU may have some other than N-size entities. For example the impovments in the 6809 over the 6800 (both of them are 8-bits CPU with a 8-bits data-bus). Among the significant enhancements introduced in the 6809 were the use of two 8-bit accumulators (A and B, which could be combined into a single 16-bit register, D), two 16-bit index registers (X, Y) and two 16-bit stack pointers.

What is the exact meaning of 'N' bit processor ? , clarification for freescale arch

While reading one Freescale processor manual I stuck somewhere, which specifies that it is a 32-bit processor.
May I know the exact meaning and logic behind that?
Update:
Does it specify its ALU width or its address width or its register width specifically or all of them together is N-bit each.
Update:
Hope you have heard of Freescale processors. I just came across their site which describes one of their latest Starcore-based processor known as SC3850 as a 16-bit processor. As far as I know, it has 32 bit program counters, including ALU, and 40-bit register width and 2x64 bit address bus width. Also the SC3850 can handle SIMD(2) instructions which are of 32 bit or 64 bit.
For more details please go through this link
One of the major reasons you would care about the register width of the processor is performance. Generally doubling the number of bits doubles the rate at which a processor can move data around, and compute. This is why we're not all using 8 bit processors.
The other major reason is address space. A 16 bit program counter limits you to 64k of address space, and a 32 bit counter limits you to 4 gigabytes. The new 64 bit processors make it possible, if all the address lines are present, to support 17,179,869,184 gigabytes of memory.
Firstly i dont have a definitive answer but i would guess that 8 being a power of 2, is an important factor. Being a power of 2 also means that certain optimisations may be performed by dividing the 8 bits into groups which also means lookup tables can be used for certain operations. 8 bits in the past was also the perfect size when dealing wiht plain old ascii characters. I can imagine that using 5 bit bytes and encoding a string of ascii characters across memory would be a pain.
Please check out the Wikipedia entry on 32-bit processors, from the entry:
In computer architecture, 32-bit
integers, memory addresses, or other
data units are those that are at most
32 bits (4 octets) wide. Also, 32-bit
CPU and ALU architectures are those
that are based on registers, address
buses, or data buses of that size.
32-bit is also a term given to a
generation of computers in which
32-bit processors were the norm.
Read and understand the article - then the answer for N will be obvious.