Related
I have 2 years in the IT industry,i love to read a lot ,but when i go deep in some subjects i see a lot of contradiction in somes articles,forum or terms that are used interchangeable.
I understand the difference between Soap and Rest.
When we want to communicate between backends, we can use either of these 2 approaches, each with its advantages and disadvantages.
Situation :
If i have an application, which can be monolithic or not, where I have a backend and I will only have a front end that consumes it. Usually we create a Rest Api so that our front end can consume it. But we will never think about exposing our backend with Soap.(Lot of reasons)
Questions:
1 -Is it okay if I say that Rest , in addition to allowing us to exchange information between application and application (backend to backend ), is it also useful when exposing services for our front end? And SOAP is only useful for Server - Server communication?
2 -And finally, if I expose a backend only for a front end, it is ok to say that we expose a web service or conceptually we say that it is a backend for frontend ?
Question 1: No the First question is wrong Assumption. We can say that in SOAP, XML is the only means of communication, while in Rest, the accepted means is JSON, while there are other formats like XML, JSON, PDF, HTML etc. and Ofcourse, XML can be converted back from server into UI Language and XML Request deciphered at Server for a Response. So, its not Ok to say that SOAP is only for Server - Server Communication.
2. No, when you have typically exposed backend only for consumption by a Front end, you can typically say that it is a backend for numerous front end client requests. But IMO, Backend for a front end is a monolithic webapplication, both bundled in WAR. so in that sense, any UI Request can request response from the Back end web service. Hope i am able to clear your understanding about web services.
I see that in your question there are actually 4 embedded independent topics. And probably because they are always used in conjunction it is sometimes tough to understand.
I will give a short answer first:
REST and SOAP both can be used for Client-Server and Server-Server integrations. But the choice will be dependent on the questions like where you want server-side UI technology/client-side UI technology or is it a single page application/portal technology, etc.
If you expose a single-backend for a single-frontend it's technically a BFF although the term BFF is used only in the case where you have separate-backends for each type of frontend application. e.g. one for mobile, one for web, one for IoT devices, etc.
The long answer is to clarify the 4 principles. Let me give a try at this by separating the topics into the below four headings:
1. Backend(Business Layer) vs Backend for frontend(BFF)
In classical 3-tier architecture (UI-Business Layer-Database) world, the middle-layer that consists of the business and integration logic is mostly referred to as backend/business layer.
This layer can be separated from the UI/Frontend using multiple different options like APIs(REST/SOAP), RPC, Servlet Technology, etc. The limitation with this 3-tier architecture is that, it is still tightly coupled to the type of users and use-cases are limited to web/browser based. It is not a good choice when you want to reuse the business-layer for both web and mobile as the mobile applications are required to be light-weight by principle.
That's where we lean on to multi-tier architecture with Backend For Frontend(BFF) as a savior. It's just a methodology to segregate the business-layers based on consumers.
2. Monolith vs SOA vs Microservices(Optimized SOA)
In a monolith world all the code components mostly UI and Business Layer sits in a tightly coupled fashion. The simplest example would be a Java Servlet Pages(JSP) application with Java as Business Layer. These are typically server-side UI technologies.
In Service Oriented Architecture(SOA), the usecases revolve around leveraging reusable business layer functions aka services. Here one would have to deal with UI-Server, Inter-Service and Server-Server integration scenarios. It's heavily service dependent, meaning it's like a spider-web of dependent applications.
The Microservices is an extension of SOA, but the approach is to keep a resource in focus instead of services to reduce the spider-web dependencies. Hence, self-sufficient and standalone service-clusters are the base of micro-services architecture.
3. SOAP vs REST Webservices
SOAP stands for Simple Object Access Protocol, typically used by the business-layer to provide user-defined methods/services to manipulate an object. For example look at the names of the services for accessing a book collection
To get a book getABook()
Get the whole list of books listAllBooks()
Find a book by name searchABook(String name)
Update a book's details updateABookDetails()
On the other hand, REST is representational state transfer which transfers the state of a web-resource to the client using underlying existing HTTP methods. So the above services for accessing a book collection would look like
To get a book /book(HTTP GET)
Get the whole list of books /books(HTTP GET)
Find a book by name /book?name={search}(HTTP GET)
Update a book's details /book/{bookId}(HTTP PATCH/PUT)
4. How to make a correct choice of architecture?
Spot the diversity of the application user groups and usages: This will help to understand the platform(web/mobile/IoT/etc), nature of the application and session-management.
Determine the estimated/required throughput: This will help you to understand the scalability requirements.
How frequently and who will be maintaining the application: This will help to gauge the application and technology complexity, deployment cycles, deployment strategy, appetite for downtime, etc.
In conclusion, always follow the divine rule of KISS: Keep it simple, stupid.
1.)
A webapplication is for H2M communication a webservice is for M2M communication through the web. The interface of the service is more standardized, more structured, so machines can easily use it and parse the messages.
I don't think it matters where your service consumer is, it can run in a browser or it can run on the server. As long as it can communicate with the service on a relative safe channel it is ok.
You design a service usually to decouple it from multiple different consumers, so you don't have to deal with the consumer implementations. This makes sense usually when you have potentially unknown consumers programmed usually by 3rd party programmers you don't even know or want to know about. You version the service or at least the messages to stay compatible with old consumers.
If you have only a single consumer developed by you, then it might be too much extra effort to maintain a service with a quasi-standard interface. You can easily change the code of the consumer when you change the interface of the service, so thinking about interface design, standardization, backward compatibility, etc. does not make much sense. Though you can still use REST or SOAP ad hoc without much design. In this case having a RESTish CRUD API without hypermedia is a better choice I think.
2.)
I think both are good, I would say backend in your scenario.
I understand (somewhat) what are differences between monolithic , microservices .
And also what is SOA it is a service consumer/provider architecture and microservice is subset of SOA. and they use Restfull/SOAP APIs to communicate.
So when a a request something he/she does using Rest/SOAP API but how in a Monolithic architecture a client request through which API? I searched all the links/blogs on google, videos on youtube but still I am not clear about this.
Or may be my whole understanding is not correct.
Sounds like you are a bit confused, I would really recommend you picking up a book on the subject.
Monolithic vs micoservice application is more about how you package and deploy your application and in some sense how coupled modules/subsystems are. The extreme example: you always deploy the entire monolithic applications for the smallest possible change, and in the microservice example you just need to make the same change to one service.
Rest API and SOAP are protocols for how (http) messages are passed between client <-> server and has nothing to do with monolithic vs micro.
Monolithic application can of course have public http API's, and it might not be possible for a user (sending request) of that API to tell the architecture style of that application. And why would she care about that?
I think this is a nice start: https://martinfowler.com/articles/microservices.html
In my iphone application I am calling (by SOAP post method) a web service which is written in .net and hosted on a server, and its all working fine. But my doubt is, can we write a web service in objective c? And host it on a server? so that we should be able to access it from any of the platforms like .net, php and objectiveC.
I read a fantastic tutorial regarding this question some time ago here.
To be honest, it can be quite difficult to really use this in a productive environment. If you want to get all the features and tools Apple gives to you (what seems to be the intention of your question), you'll have to use a Mac in order to run your service afterwards.
In my opionion using PHP for example (if you need a db also backed up by MySQL) is much easier. Almost all hosters support it and you won't have to worry about setting up a bunch of macs and connecting them via solid and stable cables to the internet (and with that: guarantee availability).
Yes. A web service is just some application that can provide a service over the web. As you can create an application in Objective C, it can be a web service the same as made in any other language.
You can make it run on any server where you have an objective C compiler, however, the framework you use may restrict your choices to the server (ie, you can write objective C on windows, but you wouldn't be able to use the NS framework)
Web services are not limited to a programming language, however you do need to find if there is any framework using objective-c can run on specific server. For example, iiS allows you to use Asp.net which could be implemented using C# or VB.Net.
From the clients who will consume web services, they don't have to be a specific type of device. I think that's the point of web services. The messages travel in between is formatted. For example, a SOAP message is using xml, and that would ensure the message travel on HTTP. Therefore no matter you use iPhone or Android or Blackberry, you should have no problem to make web service calls.
So in general, I think you have to see what kind of web services you want to create, and then see if Apple(I assume) can provide you with a good framework to do it. In terms of client side, as long as your web services are using XML or JSON, it should be well supported.
Hope it helps.
I am trying to figure out if I should migrate my gwt-rpc calls to the new GWT2.1 RequestFactory cals.
Google documentation vaguely mentions that RequestFactory is a better client-server communication method for "data-oriented services"
What I can distill from the documentation is that there is a new Proxy class that simplifies the communication (you don't pass back and forth the actual entity but just the proxy, so it is lighter weight and easier to manage)
Is that the whole point or am I missing something else in the big picture?
The big difference between GWT RPC and RequestFactory is that the RPC system is "RPC-by-concrete-type" while RequestFactory is "RPC-by-interface".
RPC is more convenient to get started with, because you write fewer lines of code and use the same class on both the client and the server. You might create a Person class with a bunch of getters and setters and maybe some simple business logic for further slicing-and-dicing of the data in the Person object. This works quite well until you wind up wanting to have server-specific, non-GWT-compatible, code inside your class. Because the RPC system is based on having the same concrete type on both the client and the server, you can hit a complexity wall based on the capabilities of your GWT client.
To get around the use of incompatible code, many users wind up creating a peer PersonDTO that shadows the real Person object used on the server. The PersonDTO just has a subset of the getters and setters of the server-side, "domain", Person object. Now you have to write code that marshalls data between the Person and PersonDTO object and all other object types that you want to pass to the client.
RequestFactory starts off by assuming that your domain objects aren't going to be GWT-compatible. You simply declare the properties that should be read and written by the client code in a Proxy interface, and the RequestFactory server components take care of marshaling the data and invoking your service methods. For applications that have a well-defined concept of "Entities" or "Objects with identity and version", the EntityProxy type is used to expose the persistent identity semantics of your data to the client code. Simple objects are mapped using the ValueProxy type.
With RequestFactory, you pay an up-front startup cost to accommodate more complicated systems than GWT RPC easily supports. RequestFactory's ServiceLayer provides significantly more hooks to customize its behavior by adding ServiceLayerDecorator instances.
I went through a transition from RPC to RF. First I have to say my experience is limited in that, I used as many EntityProxies as 0.
Advantages of GWT RPC:
It's very easy to set-up, understand and to LEARN!
Same class-based objects are used on the client and on the server.
This approach saves tons of code.
Ideal, when the same model objects (and POJOS) are used on either client and server, POJOs == MODEL OBJECTs == DTOs
Easy to move stuff from the server to client.
Easy to share implementation of common logic between client and server (this can turn out as a critical disadvantage when you need a different logic).
Disadvatages of GWT RPC:
Impossible to have different implementation of some methods for server and client, e.g. you might need to use different logging framework on client and server, or different equals method.
REALLY BAD implementation that is not further extensible: most of the server functionality is implemented as static methods on a RPC class. THAT REALLY SUCKS.
e.g. It is impossible to add server-side errors obfuscation
Some security XSS concerns that are not quite elegantly solvable, see docs (I am not sure whether this is more elegant for RequestFactory)
Disadvantages of RequestFactory:
REALLY HARD to understand from the official doc, what's the merit of it! It starts right at completely misleading term PROXIES - these are actually DTOs of RF that are created by RF automatically. Proxies are defined by interfaces, e.g. #ProxyFor(Journal.class). IDE checks if there exists corresponding methods on Journal. So much for the mapping.
RF will not do much for you in terms of commonalities of client and server because
On the client you need to convert "PROXIES" to your client domain objects and vice-versa. This is completely ridiculous. It could be done in few lines of code declaratively, but there's NO SUPPORT FOR THAT! If only we could map our domain objects to proxies more elegantly, something like JavaScript method JSON.stringify(..,,) is MISSING in RF toolbox.
Don't forget you are also responsible for setting transferable properties of your domain objects to proxies, and so on recursively.
POOR ERROR HANDLING on the server and - Stack-traces are omitted by default on the server and you re getting empty useless exceptions on the client. Even when I set custom error handler, I was not able to get to low-level stack traces! Terrible.
Some minor bugs in IDE support and elsewhere. I filed two bug requests that were accepted. Not an Einstein was needed to figure out that those were actually bugs.
DOCUMENTATION SUCKS. As I mentioned proxies should be better explained, the term is MISLEADING. For the basic common problems, that I was solving, DOCS IS USELESS. Another example of misunderstanding from the DOC is connection of JPA annotations to RF. It looks from the succinct docs that they kinda play together, and yes, there is a corresponding question on StackOverflow. I recommend to forget any JPA 'connection' before understanding RF.
Advantages of RequestFactory
Excellent forum support.
IDE support is pretty good (but is not an advantage in contrast with RPC)
Flexibility of your client and server implementation (loose coupling)
Fancy stuff, connected to EntityProxies, beyond simple DTOs - caching, partial updates, very useful for mobile.
You can use ValueProxies as the simplest replacement for DTOs (but you have to do all not so fancy conversions yourself).
Support for Bean Validations JSR-303.
Considering other disadvantages of GWT in general:
Impossible to run integration tests (GWT client code + remote server) with provided JUnit support <= all JSNI has to be mocked (e.g. localStorage), SOP is an issue.
No support for testing setup - headless browser + remote server <= no simple headless testing for GWT, SOP.
Yes, it is possible to run selenium integration tests (but that's not what I want)
JSNI is very powerful, but at those shiny talks they give at conferences they do not talk much about that writing JSNI codes has some also some rules. Again, figuring out how to write a simple callback was a task worth of true researcher.
In summary, transition from GWT RPC to RequestFactory is far from WIN-WIN situation,
when RPC mostly fits your needs. You end up writing tons conversions from client domain objects to proxies and vice-versa. But you get some flexibility and robustness of your solution. And support on the forum is excellent, on Saturday as well!
Considering all advantages and disadvantages I just mentioned, it pays really well to think in advance whether any of these approaches actually brings improvement to your solution and to your development set-up without big trade-offs.
I find the idea of creating Proxy classes for all my entities quite annoying. My Hibernate/JPA pojos are auto-generated from the database model. Why do I now need to create a second mirror of those for RPC? We have a nice "estivation" framework that takes care of "de-hibernating" the pojos.
Also, the idea of defining service interfaces that don't quite implement the server side service as a java contract but do implement the methods - sounds very J2EE 1.x/2.x to me.
Unlike RequestFactory which has poor error handling and testing capabilities (since it processes most of the stuff under the hood of GWT), RPC allows you to use a more service oriented approach. RequestFactory implements a more modern dependency injection styled approach that can provide a useful approach if you need to invoke complex polymorphic data structures. When using RPC your data structures will need to be more flat, as this will allow your marshaling utilities to translate between your json/xml and java models. Using RPC also allows you to implement more robust architecture, as quoted from the gwt dev section on Google's website.
"Simple Client/Server Deployment
The first and most straightforward way to think of service definitions is to treat them as your application's entire back end. From this perspective, client-side code is your "front end" and all service code that runs on the server is "back end." If you take this approach, your service implementations would tend to be more general-purpose APIs that are not tightly coupled to one specific application. Your service definitions would likely directly access databases through JDBC or Hibernate or even files in the server's file system. For many applications, this view is appropriate, and it can be very efficient because it reduces the number of tiers.
Multi-Tier Deployment
In more complex, multi-tiered architectures, your GWT service definitions could simply be lightweight gateways that call through to back-end server environments such as J2EE servers. From this perspective, your services can be viewed as the "server half" of your application's user interface. Instead of being general-purpose, services are created for the specific needs of your user interface. Your services become the "front end" to the "back end" classes that are written by stitching together calls to a more general-purpose back-end layer of services, implemented, for example, as a cluster of J2EE servers. This kind of architecture is appropriate if you require your back-end services to run on a physically separate computer from your HTTP server."
Also note that setting up a single RequestFactory service requires creating around 6 or so java classes where as RPC only requires 3. More code == more errors and complexity in my book.
RequestFactory also has a little bit more overhead during the request processing, as it has to marshal serialization between the data proxies and actual java models. This added interface adds extra processing cycles which can really add up in an enterprise or production environment.
I also do not believe that RequestFactory services are serialization like RPC services.
All in all after using both for some time now, i always go with RPC as its more lightweight, easier to test and debug, and faster then using a RequestFactory. Although RequestFactory might be more elegant and extensible then its RPC counter part. The added complexity does not make it a better tool necessary.
My opinion is that the best architecture is to use two web apps , one client and one server. The server is a simple lightweight generic java webapp that uses the servlet.jar library. The client is GWT. You make RESTful request via GWT-RPC into the server side of the client web application. The server side of the client is just a pass though to apache http client which uses a persistant tunnel into the request handler you have running as a single servlet in your server servlet web application. The servlet web application should contain your database application layer (hibernate, cayenne, sql etc..) This allows you to fully divorce the database object models from the actual client providing a much more extensible and robust way to develop and unit test your application. Granted it requires a tad bit of initial setup time, but in the end allows you to create a dynamic request factory sitting outside of GWT. This allows you to leverage the best of both worlds. Not to mention being able to test and make changes to your server side without having to have the gwt client compiled or build.
I think it's really helpful if you have a heavy pojo on the client side, for example if you use Hibernate or JPA entities.
We adopted another solution, using a Django style persistence framework with very light entities.
The only caveat I would put in is that RequestFactory uses the binary data transport (deRPC maybe?) and not the normal GWT-RPC.
This only matters if you are doing heavy testing with SyncProxy, Jmeter, Fiddler, or any similar tool that can read/evaluate the contents of the HTTP request/response (like GWT-RPC), but would be more challenging with deRPC or RequestFactory.
We have have a very large implementation of GWT-RPC in our project.
Actually we have 50 Service interfaces with many methods each, and we have problems with the size of TypeSerializers generated by the compiler that turns our JS code huge.
So we are analizing to move towards RequestFactory.
I have been read for a couple of days digging into the web and trying to find what other people are doing.
The most important drawback I saw, and maybe I could be wrong, is that with RequestFactory your are no longer in control of the communication between your Server Domain objects and your client ones.
What we need is apply the load / save pattern in a controlled way. I mean, for example client receive the whole object graph of objects belonging to a specific transaction, do his updates and them send the whole back to the server. The server will be responsible for doing validation, compare old with new values and do persistance. If 2 users from different sites gets the same transaction and do some updates, the resulting transaction shouldn't be the merged one. One of the updates should fail in my scenario.
I don't see that RequestFactory helps supporting this kind of processing.
Regards
Daniel
Is it fair to say that when considering a limited MIS application, say with 10-20 CRUD'able business objects, and each with ~1-10 properties, that really it's down to personal preference which route to go with?
If so, then perhaps projecting how your application is going to scale could be the key in choosing your route GWT RPC or RequestFactory:
My application is expected to stay with that relatively limited number of entities but will massively increase in terms of their numbers. 10-20 objects * 100,000 records.
My application is going to increase significantly in the breadth of entities but the relative numbers involved of each will remain low. 5000 objects * 100 records.
My application is expected to stay with that relatively limited number of entities AND will stay in relatively low numbers of e.g. 10-20 objects * 100 records
In my case, I'm at the very starting point of trying to make this decision. Further complicated by having to change UI client side architecture as well as making the transport choice. My previous (significantly) large scale GWT UI used the Hmvc4Gwt library, which has been superseded by the GWT MVP facilities.
I have heard a lot of people talking recently about middleware, but what is the exact definition of middleware? When I look into middleware, I find a lot of information and some definitions, but while reading these information and definitions, it seems that mostly all 'wares' are in the middle of something. So, are all things middleware?
Or do you have an example of a ware that isn't middleware?
Lets say your company makes 4 different products, your client has another 3 different products from another 3 different companies.
Someday the client thought, why don't we integrate all our systems into one huge system. Ten minutes later their IT department said that will take 2 years.
You (the wise developer) said, why don't we just integrate all the different systems and make them work together? The client manager staring at you... You continued, we will use a Middleware, we will study the Inputs/Outputs of all different systems, the resources they use and then choose an appropriate Middleware framework.
Still explaining to the non tech manager
With Middleware framework in the middle, the first system will produce X stuff, the system Y and Z would consume those outputs and so on.
Middleware is a terribly nebulous term. What is "middleware" in one case won't be in another. In general, you can expect something classed as middleware to have the following characteristics:
Primarily (usually exclusively) software; usually doesn't need any specialized hardware.
If it weren't there, applications that depend on it would have to incorporate it as part of their application and would experience a lot of duplication.
Almost certainly connects two applications and passes data between them.
You'll notice that this is pretty much the same definition as an operating system. So, for instance, a TCP/IP stack or caching could be considered middleware. But your OS could provide the same features, too. Indeed, middleware can be thought of like a special extension to an operating system, specific to a set of applications that depend on it. It just provides a higher-level service.
Some examples of middleware:
distributed cache
message queue
transaction monitor
packet rewriter
automated backup system
Wikipedia has a quite good explanation: http://en.wikipedia.org/wiki/Middleware
It starts with
Middleware is computer software that connects software components or applications. The software consists of a set of services that allows multiple processes running on one or more machines to interact.
What is Middleware gives a few examples.
There are (at least) three different definitions I'm aware of
in business computing, middleware is messaging and integration software between applications and services
in gaming, middleware is pretty well anything that is provided by a third-party
in (some) embedded software systems, middleware provides services that applications use, which are composed out of the functions provided by the hardware abstraction layer - it sits between the application layer and the hardware abstraction layer.
Simply put Middleware is a software component which provides services to integrate disparate systems together.
In an complex enterprise environment, there are a number of challenges when you need to integrate two or more enterprise systems together to talk to each other. Normally these systems do not understand each others language as they are developed on different platforms using different languages (like C++, Java, Cobol, etc.).
So here comes middleware software in picture which provides services like
transformation of messages formats from one app to other,
routing and enriching messages besides taking care of security,
encryption,
validation and
applying different business rules to these messages.
A typical example of middleware is an ESB products like IBM message broker (WMB/IIB), WESB, Datapower XI50, Oracle Fusion, Mule and many others.
Therefore, middleware sits mostly in between the service consuming apps and services provider apps and help these apps to talk to each other.
Middleware is about how our application responds to incoming requests. Middlewares look into the incoming request, and make decisions based on this request. We can build entire applications only using middlewares. For e.g. ASP.NET is a web framework comprising of following chief HTTP middleware components.
Exception/error handling
Static file server
Authentication
MVC
As shown in the above diagram, there are various middleware components in ASP.NET which receive the incoming request, and redirect it to a C# class (in this case a controller class).
Middleware is a general term for software that serves to "glue together" separate, often complex and already existing, programs. Some software components that are frequently connected with middleware include enterprise applications and Web services.
There is a common definition in web application development which is (and I'm making this wording up but it seems to fit): A component which is designed to modify an HTTP request and/or response but does not (usually) serve the response in its entirety, designed to be chained together to form a pipeline of behavioral changes during request processing.
Examples of tasks that are commonly implemented by middleware:
Gzip response compression
HTTP authentication
Request logging
The key point here is that none of these is fully responsible for responding to the client. Instead each changes the behavior in some way as part of the pipeline, leaving the actual response to come from something later in the sequence (pipeline).
Usually, the middlewares are run before some sort of "router", which examines the request (often the path) and calls the appropriate code to generate the response.
Personally, I hate the term "middleware" for its genericity but it is in common use.
Here is an additional explanation specifically applicable to Ruby on Rails.
Middleware stands between web applications and web services that natively can't communicate and often are written in different languages/frameworks.
One such example is OWIN middleware for .NET environment, before owin people were forced to host web apps in a microsoft hosting software called IIS. After owin was developed, it has added capacity to host both in IIS and self host, in IIS was just added support for Owin which acted as an interface. Also it become possible to host .NET web apps on Linux via Mono, which again added support for Owin.
It also added capacity to create Single Page Applications, Owin handling Http request/response context, so on top of owin you can add authentication/authorization logic via OAuth2 for example, you can configure middleware to register a class which contains logic of user authentification (for ex. OAuth2 implementation) or class which contains logic of how to manage http request/response messages, that way you can make one application communicate with other applications/services via different data format (like json, xml, etc if you are targeting web).
Some examples of middleware: CORBA, Remote Method Invocation (RMI),...
The examples mentioned above are all pieces of software allowing you to take care of communication between different processes (either running on the same machine or distributed over e.g. the internet).
From my own experience with webwork, a middleware was stuff between users (the web browser) and the backend database. It was the software that took stuff that users put in (example: orders for iPads, did some magical business logic, i.e. check if there are enough iPads available to fill the order) and updated the backend database to reflect those changes.
It is just a piece of software or a tool on which your application executes and rapplication capabilities with respect to high availability,scalability,integrating with other softwares or systems without you bothering about your application level code changes .
For example : The operating system on which your application runs requires an I.P change , you do not have to worry about it in your code , it is the middleware stack on which you can simple update the configuration.
Example 2 : You experience problems with your runtime memory allocation and feel that the your application usage has increased , you do not have to much about it unless you have a bug or bottleneck in your code , it is easily achievable by tuning middleware software configuration on which your application runs.
Example 3 : You have multiple disparate software and you need them to talk to each other or send data in a common format which is understandable by all the systems then this is where middleware systems comes handy.
Hope the information provided helps.
it is a software layer between the operating system
and applications on each side of a distributed computing system in a network. In fact it connects heterogeneous network and software systems.
If I am not wrong, in software application framework, based on the context, you can consider middleware for the following roles that can be combined in order to perform certain activities in between the user request and the application response.
Adapter
Sanitizer
Validator
I always thought of it as the oldest software I have had to install. The total app used a web server, a database server, and an application server. The web server being the middleware between the data and the app.