When should I use RequestFactory vs GWT-RPC? - gwt

I am trying to figure out if I should migrate my gwt-rpc calls to the new GWT2.1 RequestFactory cals.
Google documentation vaguely mentions that RequestFactory is a better client-server communication method for "data-oriented services"
What I can distill from the documentation is that there is a new Proxy class that simplifies the communication (you don't pass back and forth the actual entity but just the proxy, so it is lighter weight and easier to manage)
Is that the whole point or am I missing something else in the big picture?

The big difference between GWT RPC and RequestFactory is that the RPC system is "RPC-by-concrete-type" while RequestFactory is "RPC-by-interface".
RPC is more convenient to get started with, because you write fewer lines of code and use the same class on both the client and the server. You might create a Person class with a bunch of getters and setters and maybe some simple business logic for further slicing-and-dicing of the data in the Person object. This works quite well until you wind up wanting to have server-specific, non-GWT-compatible, code inside your class. Because the RPC system is based on having the same concrete type on both the client and the server, you can hit a complexity wall based on the capabilities of your GWT client.
To get around the use of incompatible code, many users wind up creating a peer PersonDTO that shadows the real Person object used on the server. The PersonDTO just has a subset of the getters and setters of the server-side, "domain", Person object. Now you have to write code that marshalls data between the Person and PersonDTO object and all other object types that you want to pass to the client.
RequestFactory starts off by assuming that your domain objects aren't going to be GWT-compatible. You simply declare the properties that should be read and written by the client code in a Proxy interface, and the RequestFactory server components take care of marshaling the data and invoking your service methods. For applications that have a well-defined concept of "Entities" or "Objects with identity and version", the EntityProxy type is used to expose the persistent identity semantics of your data to the client code. Simple objects are mapped using the ValueProxy type.
With RequestFactory, you pay an up-front startup cost to accommodate more complicated systems than GWT RPC easily supports. RequestFactory's ServiceLayer provides significantly more hooks to customize its behavior by adding ServiceLayerDecorator instances.

I went through a transition from RPC to RF. First I have to say my experience is limited in that, I used as many EntityProxies as 0.
Advantages of GWT RPC:
It's very easy to set-up, understand and to LEARN!
Same class-based objects are used on the client and on the server.
This approach saves tons of code.
Ideal, when the same model objects (and POJOS) are used on either client and server, POJOs == MODEL OBJECTs == DTOs
Easy to move stuff from the server to client.
Easy to share implementation of common logic between client and server (this can turn out as a critical disadvantage when you need a different logic).
Disadvatages of GWT RPC:
Impossible to have different implementation of some methods for server and client, e.g. you might need to use different logging framework on client and server, or different equals method.
REALLY BAD implementation that is not further extensible: most of the server functionality is implemented as static methods on a RPC class. THAT REALLY SUCKS.
e.g. It is impossible to add server-side errors obfuscation
Some security XSS concerns that are not quite elegantly solvable, see docs (I am not sure whether this is more elegant for RequestFactory)
Disadvantages of RequestFactory:
REALLY HARD to understand from the official doc, what's the merit of it! It starts right at completely misleading term PROXIES - these are actually DTOs of RF that are created by RF automatically. Proxies are defined by interfaces, e.g. #ProxyFor(Journal.class). IDE checks if there exists corresponding methods on Journal. So much for the mapping.
RF will not do much for you in terms of commonalities of client and server because
On the client you need to convert "PROXIES" to your client domain objects and vice-versa. This is completely ridiculous. It could be done in few lines of code declaratively, but there's NO SUPPORT FOR THAT! If only we could map our domain objects to proxies more elegantly, something like JavaScript method JSON.stringify(..,,) is MISSING in RF toolbox.
Don't forget you are also responsible for setting transferable properties of your domain objects to proxies, and so on recursively.
POOR ERROR HANDLING on the server and - Stack-traces are omitted by default on the server and you re getting empty useless exceptions on the client. Even when I set custom error handler, I was not able to get to low-level stack traces! Terrible.
Some minor bugs in IDE support and elsewhere. I filed two bug requests that were accepted. Not an Einstein was needed to figure out that those were actually bugs.
DOCUMENTATION SUCKS. As I mentioned proxies should be better explained, the term is MISLEADING. For the basic common problems, that I was solving, DOCS IS USELESS. Another example of misunderstanding from the DOC is connection of JPA annotations to RF. It looks from the succinct docs that they kinda play together, and yes, there is a corresponding question on StackOverflow. I recommend to forget any JPA 'connection' before understanding RF.
Advantages of RequestFactory
Excellent forum support.
IDE support is pretty good (but is not an advantage in contrast with RPC)
Flexibility of your client and server implementation (loose coupling)
Fancy stuff, connected to EntityProxies, beyond simple DTOs - caching, partial updates, very useful for mobile.
You can use ValueProxies as the simplest replacement for DTOs (but you have to do all not so fancy conversions yourself).
Support for Bean Validations JSR-303.
Considering other disadvantages of GWT in general:
Impossible to run integration tests (GWT client code + remote server) with provided JUnit support <= all JSNI has to be mocked (e.g. localStorage), SOP is an issue.
No support for testing setup - headless browser + remote server <= no simple headless testing for GWT, SOP.
Yes, it is possible to run selenium integration tests (but that's not what I want)
JSNI is very powerful, but at those shiny talks they give at conferences they do not talk much about that writing JSNI codes has some also some rules. Again, figuring out how to write a simple callback was a task worth of true researcher.
In summary, transition from GWT RPC to RequestFactory is far from WIN-WIN situation,
when RPC mostly fits your needs. You end up writing tons conversions from client domain objects to proxies and vice-versa. But you get some flexibility and robustness of your solution. And support on the forum is excellent, on Saturday as well!
Considering all advantages and disadvantages I just mentioned, it pays really well to think in advance whether any of these approaches actually brings improvement to your solution and to your development set-up without big trade-offs.

I find the idea of creating Proxy classes for all my entities quite annoying. My Hibernate/JPA pojos are auto-generated from the database model. Why do I now need to create a second mirror of those for RPC? We have a nice "estivation" framework that takes care of "de-hibernating" the pojos.
Also, the idea of defining service interfaces that don't quite implement the server side service as a java contract but do implement the methods - sounds very J2EE 1.x/2.x to me.

Unlike RequestFactory which has poor error handling and testing capabilities (since it processes most of the stuff under the hood of GWT), RPC allows you to use a more service oriented approach. RequestFactory implements a more modern dependency injection styled approach that can provide a useful approach if you need to invoke complex polymorphic data structures. When using RPC your data structures will need to be more flat, as this will allow your marshaling utilities to translate between your json/xml and java models. Using RPC also allows you to implement more robust architecture, as quoted from the gwt dev section on Google's website.
"Simple Client/Server Deployment
The first and most straightforward way to think of service definitions is to treat them as your application's entire back end. From this perspective, client-side code is your "front end" and all service code that runs on the server is "back end." If you take this approach, your service implementations would tend to be more general-purpose APIs that are not tightly coupled to one specific application. Your service definitions would likely directly access databases through JDBC or Hibernate or even files in the server's file system. For many applications, this view is appropriate, and it can be very efficient because it reduces the number of tiers.
Multi-Tier Deployment
In more complex, multi-tiered architectures, your GWT service definitions could simply be lightweight gateways that call through to back-end server environments such as J2EE servers. From this perspective, your services can be viewed as the "server half" of your application's user interface. Instead of being general-purpose, services are created for the specific needs of your user interface. Your services become the "front end" to the "back end" classes that are written by stitching together calls to a more general-purpose back-end layer of services, implemented, for example, as a cluster of J2EE servers. This kind of architecture is appropriate if you require your back-end services to run on a physically separate computer from your HTTP server."
Also note that setting up a single RequestFactory service requires creating around 6 or so java classes where as RPC only requires 3. More code == more errors and complexity in my book.
RequestFactory also has a little bit more overhead during the request processing, as it has to marshal serialization between the data proxies and actual java models. This added interface adds extra processing cycles which can really add up in an enterprise or production environment.
I also do not believe that RequestFactory services are serialization like RPC services.
All in all after using both for some time now, i always go with RPC as its more lightweight, easier to test and debug, and faster then using a RequestFactory. Although RequestFactory might be more elegant and extensible then its RPC counter part. The added complexity does not make it a better tool necessary.
My opinion is that the best architecture is to use two web apps , one client and one server. The server is a simple lightweight generic java webapp that uses the servlet.jar library. The client is GWT. You make RESTful request via GWT-RPC into the server side of the client web application. The server side of the client is just a pass though to apache http client which uses a persistant tunnel into the request handler you have running as a single servlet in your server servlet web application. The servlet web application should contain your database application layer (hibernate, cayenne, sql etc..) This allows you to fully divorce the database object models from the actual client providing a much more extensible and robust way to develop and unit test your application. Granted it requires a tad bit of initial setup time, but in the end allows you to create a dynamic request factory sitting outside of GWT. This allows you to leverage the best of both worlds. Not to mention being able to test and make changes to your server side without having to have the gwt client compiled or build.

I think it's really helpful if you have a heavy pojo on the client side, for example if you use Hibernate or JPA entities.
We adopted another solution, using a Django style persistence framework with very light entities.

The only caveat I would put in is that RequestFactory uses the binary data transport (deRPC maybe?) and not the normal GWT-RPC.
This only matters if you are doing heavy testing with SyncProxy, Jmeter, Fiddler, or any similar tool that can read/evaluate the contents of the HTTP request/response (like GWT-RPC), but would be more challenging with deRPC or RequestFactory.

We have have a very large implementation of GWT-RPC in our project.
Actually we have 50 Service interfaces with many methods each, and we have problems with the size of TypeSerializers generated by the compiler that turns our JS code huge.
So we are analizing to move towards RequestFactory.
I have been read for a couple of days digging into the web and trying to find what other people are doing.
The most important drawback I saw, and maybe I could be wrong, is that with RequestFactory your are no longer in control of the communication between your Server Domain objects and your client ones.
What we need is apply the load / save pattern in a controlled way. I mean, for example client receive the whole object graph of objects belonging to a specific transaction, do his updates and them send the whole back to the server. The server will be responsible for doing validation, compare old with new values and do persistance. If 2 users from different sites gets the same transaction and do some updates, the resulting transaction shouldn't be the merged one. One of the updates should fail in my scenario.
I don't see that RequestFactory helps supporting this kind of processing.
Regards
Daniel

Is it fair to say that when considering a limited MIS application, say with 10-20 CRUD'able business objects, and each with ~1-10 properties, that really it's down to personal preference which route to go with?
If so, then perhaps projecting how your application is going to scale could be the key in choosing your route GWT RPC or RequestFactory:
My application is expected to stay with that relatively limited number of entities but will massively increase in terms of their numbers. 10-20 objects * 100,000 records.
My application is going to increase significantly in the breadth of entities but the relative numbers involved of each will remain low. 5000 objects * 100 records.
My application is expected to stay with that relatively limited number of entities AND will stay in relatively low numbers of e.g. 10-20 objects * 100 records
In my case, I'm at the very starting point of trying to make this decision. Further complicated by having to change UI client side architecture as well as making the transport choice. My previous (significantly) large scale GWT UI used the Hmvc4Gwt library, which has been superseded by the GWT MVP facilities.

Related

Conceptual doubts regarding Rest and Soap : Backends for Frontend

I have 2 years in the IT industry,i love to read a lot ,but when i go deep in some subjects i see a lot of contradiction in somes articles,forum or terms that are used interchangeable.
I understand the difference between Soap and Rest.
When we want to communicate between backends, we can use either of these 2 approaches, each with its advantages and disadvantages.
Situation :
If i have an application, which can be monolithic or not, where I have a backend and I will only have a front end that consumes it. Usually we create a Rest Api so that our front end can consume it. But we will never think about exposing our backend with Soap.(Lot of reasons)
Questions:
1 -Is it okay if I say that Rest , in addition to allowing us to exchange information between application and application (backend to backend ), is it also useful when exposing services for our front end? And SOAP is only useful for Server - Server communication?
2 -And finally, if I expose a backend only for a front end, it is ok to say that we expose a web service or conceptually we say that it is a backend for frontend ?
Question 1: No the First question is wrong Assumption. We can say that in SOAP, XML is the only means of communication, while in Rest, the accepted means is JSON, while there are other formats like XML, JSON, PDF, HTML etc. and Ofcourse, XML can be converted back from server into UI Language and XML Request deciphered at Server for a Response. So, its not Ok to say that SOAP is only for Server - Server Communication.
2. No, when you have typically exposed backend only for consumption by a Front end, you can typically say that it is a backend for numerous front end client requests. But IMO, Backend for a front end is a monolithic webapplication, both bundled in WAR. so in that sense, any UI Request can request response from the Back end web service. Hope i am able to clear your understanding about web services.
I see that in your question there are actually 4 embedded independent topics. And probably because they are always used in conjunction it is sometimes tough to understand.
I will give a short answer first:
REST and SOAP both can be used for Client-Server and Server-Server integrations. But the choice will be dependent on the questions like where you want server-side UI technology/client-side UI technology or is it a single page application/portal technology, etc.
If you expose a single-backend for a single-frontend it's technically a BFF although the term BFF is used only in the case where you have separate-backends for each type of frontend application. e.g. one for mobile, one for web, one for IoT devices, etc.
The long answer is to clarify the 4 principles. Let me give a try at this by separating the topics into the below four headings:
1. Backend(Business Layer) vs Backend for frontend(BFF)
In classical 3-tier architecture (UI-Business Layer-Database) world, the middle-layer that consists of the business and integration logic is mostly referred to as backend/business layer.
This layer can be separated from the UI/Frontend using multiple different options like APIs(REST/SOAP), RPC, Servlet Technology, etc. The limitation with this 3-tier architecture is that, it is still tightly coupled to the type of users and use-cases are limited to web/browser based. It is not a good choice when you want to reuse the business-layer for both web and mobile as the mobile applications are required to be light-weight by principle.
That's where we lean on to multi-tier architecture with Backend For Frontend(BFF) as a savior. It's just a methodology to segregate the business-layers based on consumers.
2. Monolith vs SOA vs Microservices(Optimized SOA)
In a monolith world all the code components mostly UI and Business Layer sits in a tightly coupled fashion. The simplest example would be a Java Servlet Pages(JSP) application with Java as Business Layer. These are typically server-side UI technologies.
In Service Oriented Architecture(SOA), the usecases revolve around leveraging reusable business layer functions aka services. Here one would have to deal with UI-Server, Inter-Service and Server-Server integration scenarios. It's heavily service dependent, meaning it's like a spider-web of dependent applications.
The Microservices is an extension of SOA, but the approach is to keep a resource in focus instead of services to reduce the spider-web dependencies. Hence, self-sufficient and standalone service-clusters are the base of micro-services architecture.
3. SOAP vs REST Webservices
SOAP stands for Simple Object Access Protocol, typically used by the business-layer to provide user-defined methods/services to manipulate an object. For example look at the names of the services for accessing a book collection
To get a book getABook()
Get the whole list of books listAllBooks()
Find a book by name searchABook(String name)
Update a book's details updateABookDetails()
On the other hand, REST is representational state transfer which transfers the state of a web-resource to the client using underlying existing HTTP methods. So the above services for accessing a book collection would look like
To get a book /book(HTTP GET)
Get the whole list of books /books(HTTP GET)
Find a book by name /book?name={search}(HTTP GET)
Update a book's details /book/{bookId}(HTTP PATCH/PUT)
4. How to make a correct choice of architecture?
Spot the diversity of the application user groups and usages: This will help to understand the platform(web/mobile/IoT/etc), nature of the application and session-management.
Determine the estimated/required throughput: This will help you to understand the scalability requirements.
How frequently and who will be maintaining the application: This will help to gauge the application and technology complexity, deployment cycles, deployment strategy, appetite for downtime, etc.
In conclusion, always follow the divine rule of KISS: Keep it simple, stupid.
1.)
A webapplication is for H2M communication a webservice is for M2M communication through the web. The interface of the service is more standardized, more structured, so machines can easily use it and parse the messages.
I don't think it matters where your service consumer is, it can run in a browser or it can run on the server. As long as it can communicate with the service on a relative safe channel it is ok.
You design a service usually to decouple it from multiple different consumers, so you don't have to deal with the consumer implementations. This makes sense usually when you have potentially unknown consumers programmed usually by 3rd party programmers you don't even know or want to know about. You version the service or at least the messages to stay compatible with old consumers.
If you have only a single consumer developed by you, then it might be too much extra effort to maintain a service with a quasi-standard interface. You can easily change the code of the consumer when you change the interface of the service, so thinking about interface design, standardization, backward compatibility, etc. does not make much sense. Though you can still use REST or SOAP ad hoc without much design. In this case having a RESTish CRUD API without hypermedia is a better choice I think.
2.)
I think both are good, I would say backend in your scenario.

RESTful web service for systems integration understaning

I am, indeed, new to RESTful services and while I feel I understand the concepts I am resistant to some aspects of its use in my current project.
The project involves the provision of some form data from another system. Project members insist that the form data should be broken down into "resources" as there are customer and customer addresses etc on the form.
So its all about how granular the REST API is... the form data is not complete and actionable until we have all of the form data (and there's very little at that). And, in fact, I guess we will have to prepare some integrator on the service side to assemble all of these resource bits before we can use them because at present we have no persistence for them or, specifically, we have persistence for them but need to hide the data before it becomes actionable.
Again, at present this is point to point communications without any business case for sharing or service composition.
So, i'm of the idea that one service "form" using a POST is an acceptable optimization and do to the amount of work it cuts for us is a pragamatic approach.
What am I not getting about doing it the hard and expensive way?
If you don't need a high level definition in which you need to use a heavier structure with a well formed and heavy xml with its dtd, where you would be using a WSDL, etc. Then the best choice is REST, is lighter and use HTTP.
Here you can find a better explanation:
WSDL vs REST Pros and Cons

EJB - Send Data to remote

I want to exchange data between two applications JEE6/JSF2.0 and i'm looking for the best solution. I thought of the below solutions :
by using a JSON file.
by using XML file.
by using GSON file.
by using Remote interface (EJB 3.0).
For you, what's the best solution to use ?
edit : This two applications will be always running on the same network (but can not be on the same JVM)
I want to provide an alternative to David's answer, as I feel that there are some drawbacks to RMI that he underplayed.
This is a Java specific technology. If a third server needs to be introduced and it is a Microsoft Reporting Services server for example, then it cannot talk in the same language.
RMI is an OLD technology and doesn't particularly look well on a CV. Web services are the future. Experienced RMI developers are more uncommon than experienced web service developers.
Cumbersome and heavy framework
A better solution in my opinion would be to use SOAP XML based web services. Here are some advantages to this approach:
Universal acceptance in nearly any development framework. No matter the technology, nearly all have helpful libraries for interacting with web services.
Java has good support for object serialization into XML. This means objects can be quickly serialized into a SOAP XML request, sent to the other server, and deserialized back into a Java object by the other application server for processing.
A service layer can give you the decoupling interface between the two applications just as RMI can.
I hope you reconsider the use of SOAP XML based web services in your application.
There's two options really as you yourself stated.
Using RMI to connect to a EJB or using a webservice and communicating by JSON/XML etc...
From my experience RMI can be favorable if your applicaitons are on the same network, if not then you might get problems with firewalls etc and be forced to tunnel the RMI using HTTPS... which pretty much makes the RMI calls webservice calls.
If your on two different machines then webservices are nice as they dont cause as much trouble with firewalls. Also as they use the HTTP protocol you dont have to worry about the data being transfered.
These examples are kinda generalised but should give you some insight.
GSON vs XML vs JSON is a completely different subject... Non is superiour to the other, and all are fairly easily read by the human eye.
UPDATE
From what I've understod you wont have to worry about firewalls and such, I would recommend using RMI. It usually results in cleaner code and somewhat better performance.
Since I have seen both in action, I can make a comparison between the two technologies, EJB and WebServices. I can confirm that EJB is way more efficient, has support of transactions (including distributed transactions, if that is your requirement), exception handling, and binary streaming out of the box. In terms of performance EJB may exceed SOAP by a factor of 5 times in speed, and REST for about 3 times.
However, EJB is not an integration technology. In fact, it has never thought to do so. The biggest flaw of EJB is that it is very coupled to the Java Platform. Therefore, both endpoints must be written in Java and should use the same Java EE version.
Another problem is that EJB is not a protocol per se, so the implementations from two containers/vendors is probably different. If you need to access a remote EJB from JBoss AS on an Oracle WebLogic server, you must bring JBoss EJB client implementation with you.
Another big problem related to integration with EJB is a lack of data exchange format. Since it uses Java Serialized objects for communication, the data types must be shared on both ends. If you create a new exception type on the server that is classified as an Application Exception, if the client who consumes this service triggers the exception, his code will break. Note that, in this case the remote API was not violated, but another unknown type was introduced.
And, of course, by depending solely on the class type as an exchange format, you are giving the programmers opportunity for doing very stupid things. If you have many different teams in large projects using EJB as integration technology using different versions of Java EE, prepare yourself to experience uttermost pain. I've seem a programmer including a JPA entity on the client, who was annotated with named queries, the table which was accessing, its columns, etc, essentially giving away all the database layout to the service consumer. But it can get even worse. I've already seem a programmer returning a data structure that belonged to a dependency, namely Eclipselink 1.0. However, if you access this from a JBoss server, Eclipselink is also a JPA implementation technology, which conflicts with JBoss' hibernate. So, now you have to include Eclipselink jar in your JBoss APP classpath and configure the container for not loading JPA related packages, which otherwise will break your application completely. Even so, it can get WORSE than before: some other service you need to connect had also the bright idea of using the same datastructure, but now from Eclipselink 1.1.1, that has a different implementation, but the same class signature. Now you are in a very bad situation.
The bottom line: NEVER, EVER, use EJB as an integration technology. Use SOAP using a contract-first approach, where you define a canonical data model for the application, mapping java datastructures to a XML exchange format that can be used by any client, be it written in any language or using different stacks. Or use REST implementing a resource based, using HATEOAS principles. These days I rarely seem a reason for using EJB at all, since CDI is now on the market, support many features that EJB does and does not include any RPC related technology.

GWT non-Java backend application structure

Does anyone know where is a good example of GWT application with non-Java backend? Something like the "Contacts" application on the official pages of GWT. I'm interested in the following topics specifically (this is how I see the "back" part of the application, but it may be different, of course):
DTO serialization.
Communication layer (the very back one). Should it use generics and work with any abstract DTO? Is there any other proven approach?
Service layer, which uses the communication layer with specific DTOs.
Requests caching. Should it be implemended on the service or communication level?
Good abstraction. So we can easily substitute any parts for testing and other purposes, like using different serializators (e. g. XML, JSON), different servers' behaviors when managing user sessions (URL might change once the user is logged in).
I know, there are many similar topics here, but I haven't found one, which is focused on the structure of the client part.
Use REST on both sides. PHP/Python REST server-side. GWT client-side.
Don't use GWT-RPC.
The following gives a guideline for Java-java REST, but there is leeway to move out of server-side Java. It explains why REST is appropriate.
http://h2g2java.blessedgeek.com/2011/11/gwt-with-jax-rs-aka-rpcrest-part-0.html.
REST is an industry established pattern (Google. Yahoo, in fact every stable-minded establishment deploys REST services).
REST is abstracted as a HTTP level data structure. Which Java, PHP and Python have established libraries to comply to ensure DTO integrity.
Communication layer (the very back one). Should it use generics ???
Don't understand the question or why the question exists. Just use the REST pattern to provide integrity to non-homogeneous language between server and client and to HTTP request/response.
If you are using Java at back-end, there is no escape from using generics. Generics saves code. But using generics extensively needs programmer to have equally extensive visual capacity to visualise the generics. If your back-end is on PHP or Python, are there generics for PHP? Python generics? Might as well stay in Java land or C# land and forget about Java-free service provider.
Did you mean DTO polymorphism? Don't try polymorphism or decide on it until after you have established your service. Then adaptively and with agility introduce polymorphism into your DTOs if you really see the need. But try to avoid it because with JSON data interchange, it gets rather confusing between server and client. Especially if they don't speak the same programming language.
If you are asking HTTP level generics? I don't know of any framework, not SOAP, not REST where you could have generics carried by the XML or JSON. Is there? Generics?
Service layer? REST.
Requests caching? Cache at every appropriate opportunity. Have service-provider cache query results for items common and static to all sessions like menu, menu/drop-down box choices, labels, etc. Cache your history and places.
On GWT side cache records so that forward/backward button will not trigger inadvertent query. Use MVP pattern and history to manage history traversal that might trigger redisplay of info.
If you are talking about unified info abstraction, you should start your project with JAX-RS to define/test the API and perform data abstraction. Without performing any business logic.
Then, once your HTTP-level APIs andDTOs are defined, convert server-side to using language of your choice to proceed to write more complex code.
BTW, I don't dig your terminology "Backend".
We normally use the terminology client-side for service consumer, server-side for service provider, backend for data repository/persistence access, mid-tier or middle-ware for intervening/auxiliary software required to provide mathematical/scientific/graphical analysis/synthesis.
If our terminologies did not coincide, I probably answered this question wrong.

GWT-RPC vs HTTP Call - which is better?

I am evaluating if there is a performance variation between calls made using GWT-RPC and HTTP Call.
My appln services are hosted as Java servlets and I am currently using HTTPProxy connections to fetch data from them. I am looking to convert them to GWT-RPC calls if that brings in performance improvement.
I would like to know about pros/cons of each...
Also any suggestions on tools to measure performance of Async calls...
[A good article on various Server communication strategies which can be employed with GWT.]
GWT-RPC is generally preferred when the backend is also written in Java because it means not having to encode and decode the object at each end -- you can just transmit a regular Java object to the client, and use it there.
JSON (using RequestBuilder) is generally used when the backend is written in some other language, and requires the server to JSON-encode the response object and the client to JSON-decode it into a JavaScriptObject for use in the GWT code.
If I had to guess I'd say that GWT-RPC also results in smaller transport objects because the GWT team optimizes for this case, but either will work, and JSON can still be pretty small. It just comes down to a matter of developer convenience in most cases.
As for tools to measure request time, you can either use Chrome/Webkit's developer tools, or Firefox's Firebug extension, or measure request time in your app and send that metrics data back to your server in a deferred request for collection and analysis.
I wrote that article mentioned in the question (thanks for the link!).
As always, the answer is 'it depends'. I've used both GWT-RPC and JSON.
As outlined above, GWT-RPC allows for some serious productivity in shipping java objects (with some limits) over the wire. Some logic can be shared, and GWT takes care of marshalling/unmarshalling your object.
JSON allows for cross domain access and consumption by other, non GWT clients. You can get by with overlay types, but no behavior (like validation) can be shared. JSON can also be easily compressed and cached, unlike GWT-RPC (last time I looked).
Since we have no idea what the payload is, performance recommendations are hard to give. I'd recommend (again, as someone does above) testing yourself.
Just an addition to the other answers, there's one point to consider which could influence your decision towards JSON, even if you're using Java on the back-end:
Maybe sometime in the future, you want to allow non-GWT clients to talk to your server. Many modern sites offer some kind of API access, and if you're using JSON, you basically already have a comparatively open API.
In general I agree with Jason - if your server side uses Java, go with GWT-RPC. You'll be able to reuse the POJOs, validation logic, etc. RPC also tends to "play" better with MVP and code-splitting.
However, if your server side uses anything else use JSON - but don't fret, with JavaScript Overlay Types using JSON is a breeze. You won't be able to reuse the code from client side on the server, though (YMMV).
From a performance point of view - I'd say that JSON has the edge here. Modern browsers have some seriously good methods for fast encoding/decoding for JSON. I'm not sure what GWT-RPC is "behind the scenes", but I doubt it can beat JSON when it comes to speed. As for the payload - that depends on the developer (the names of the objects in JSON, etc), but I'd say that in general JSON is also (marginably) smaller. Enable compression on your server (for example, mod_deflate on Apache HTTP) to squeeze the bits even more ;)