I have line of scripts for review here, I noticed variable declaration with a value:
function readConfig {
Param([string]$fileName)
$config = #{}
Get-Content $fileName | Where-Object {
$_ -like '*=*'
} | ForEach-Object {
$key, $value = $_ -split '\s*=\s*', 2
$config[$key] = $value
}
return $config
}
I wonder what #{} means in $config = #{}?
#{} in PowerShell defines a hashtable, a data structure for mapping unique keys to values (in other languages this data structure is called "dictionary" or "associative array").
#{} on its own defines an empty hashtable, that can then be filled with values, e.g. like this:
$h = #{}
$h['a'] = 'foo'
$h['b'] = 'bar'
Hashtables can also be defined with their content already present:
$h = #{
'a' = 'foo'
'b' = 'bar'
}
Note, however, that when you see similar notation in PowerShell output, e.g. like this:
abc: 23
def: #{"a"="foo";"b"="bar"}
that is usually not a hashtable, but the string representation of a custom object.
The meaning of the #{}
can be seen in diffrent ways.
If the #{} is empty, an empty hash table is defined.
But if there is something between the curly brackets it can be used in a contex of an splatting operation.
Hash Table
Splatting
I think there is no need in explaining what an hash table is.
Splatting is a method of passing a collection of parameter values to a command as unit.
$prints = #{
Name = "John Doe"
Age = 18
Haircolor = "Red"
}
Write-Host #prints
Hope it helps! BR
Edit:
Regarding the updated code from the questioner the answer is
It defines an empty hash table.
Be aware that Get-Content has its own parameters!
THE MOST IMPORTANT 1:
[-Raw]
Related
I've seen the # symbol used in PowerShell to initialise arrays.
What exactly does the # symbol denote and where can I read more about it?
In PowerShell V2, # is also the Splat operator.
PS> # First use it to create a hashtable of parameters:
PS> $params = #{path = "c:\temp"; Recurse= $true}
PS> # Then use it to SPLAT the parameters - which is to say to expand a hash table
PS> # into a set of command line parameters.
PS> dir #params
PS> # That was the equivalent of:
PS> dir -Path c:\temp -Recurse:$true
PowerShell will actually treat any comma-separated list as an array:
"server1","server2"
So the # is optional in those cases. However, for associative arrays, the # is required:
#{"Key"="Value";"Key2"="Value2"}
Officially, # is the "array operator." You can read more about it in the documentation that installed along with PowerShell, or in a book like "Windows PowerShell: TFM," which I co-authored.
While the above responses provide most of the answer it is useful--even this late to the question--to provide the full answer, to wit:
Array sub-expression (see about_arrays)
Forces the value to be an array, even if a singleton or a null, e.g. $a = #(ps | where name -like 'foo')
Hash initializer (see about_hash_tables)
Initializes a hash table with key-value pairs, e.g.
$HashArguments = #{ Path = "test.txt"; Destination = "test2.txt"; WhatIf = $true }
Splatting (see about_splatting)
Let's you invoke a cmdlet with parameters from an array or a hash-table rather than the more customary individually enumerated parameters, e.g. using the hash table just above, Copy-Item #HashArguments
Here strings (see about_quoting_rules)
Let's you create strings with easily embedded quotes, typically used for multi-line strings, e.g.:
$data = #"
line one
line two
something "quoted" here
"#
Because this type of question (what does 'x' notation mean in PowerShell?) is so common here on StackOverflow as well as in many reader comments, I put together a lexicon of PowerShell punctuation, just published on Simple-Talk.com. Read all about # as well as % and # and $_ and ? and more at The Complete Guide to PowerShell Punctuation. Attached to the article is this wallchart that gives you everything on a single sheet:
You can also wrap the output of a cmdlet (or pipeline) in #() to ensure that what you get back is an array rather than a single item.
For instance, dir usually returns a list, but depending on the options, it might return a single object. If you are planning on iterating through the results with a foreach-object, you need to make sure you get a list back. Here's a contrived example:
$results = #( dir c:\autoexec.bat)
One more thing... an empty array (like to initialize a variable) is denoted #().
The Splatting Operator
To create an array, we create a variable and assign the array. Arrays are noted by the "#" symbol. Let's take the discussion above and use an array to connect to multiple remote computers:
$strComputers = #("Server1", "Server2", "Server3")<enter>
They are used for arrays and hashes.
PowerShell Tutorial 7: Accumulate, Recall, and Modify Data
Array Literals In PowerShell
I hope this helps to understand it a bit better.
You can store "values" within a key and return that value to do something.
In this case I have just provided #{a="";b="";c="";} and if not in the options i.e "keys" (a, b or c) then don't return a value
$array = #{
a = "test1";
b = "test2";
c = "test3"
}
foreach($elem in $array.GetEnumerator()){
if ($elem.key -eq "a"){
$key = $elem.key
$value = $elem.value
}
elseif ($elem.key -eq "b"){
$key = $elem.key
$value = $elem.value
}
elseif ($elem.key -eq "c"){
$key = $elem.key
$value = $elem.value
}
else{
Write-Host "No other value"
}
Write-Host "Key: " $key "Value: " $value
}
I have two dictionaries like this:
$first = #{}
$first.Add('John', 'Doe')
$first.Add('Johnny', 'Doe')
$second = #{}
$second.Add('Jack', 'Test')
$second.Add('Jacky', 'Test')
And I have a general $all = #{} dictionary, that stands for all dictionaries combined.
Ex. when I want to see all keys that $all contains:
foreach($key in $all){
Write-Host $key
}
It will show this:
John
Johnny
Jack
Jacky
p.s. I have this one:
$all = #{}
$all_dict = #{}
$all_dict += $first
$all_dict += $second
foreach($dict in $all_dict){
foreach($key in $dict.Key){
$all.Add($key, $dict[$key])
}
}
But I was wondering if there is another way to do it without the need to add all dictionaries to an array and then iterate through them
I wouldn't do the += addition to hashtables, but instead use a ForEach-Object on the hashes .Keys. That way, the code can be shortened, but also it will leave you an easier choice whether you would want the possible duplicates from Hashtable 1 ($first) to be overwritten by the values from the second Hashtable ($second).
Something like this:
$first = #{}
$first.Add('John', 'Doe')
$first.Add('Johnny', 'Doe')
$second = #{}
$second.Add('Jack', 'Test')
$second.Add('Jacky', 'Test')
$second.Add('Johnny', 'Depp') # Duplicate key: same first name, different lastname
$all = #{}
# copy all keys and values from the $first Hashtable into $all
$first.Keys | ForEach-Object { $all[$_] = $first[$_] }
For the next part, you'll have to decide what to do with duplicate keys:
Method 1
# add the stuff from Hashtable $second to it:
# this will overwrite the value if the key already exists (i.e. $second value 'wins')
$second.Keys | ForEach-Object { $all[$_] = $second[$_] }
OR use Method 2
# make sure the value of the $first hashtable is NOT overwritten (i.e. $first value 'wins')
$second.Keys | ForEach-Object { if (!($all.ContainsKey($_))) { $all[$_] = $second[$_] }}
In case you choose to overwrite (method 1), the $all hash will contain
Name Value
---- -----
John Doe
Jacky Test
Johnny Depp
Jack Test
If you choose NOT to overwrite (method 2), $all will be
Name Value
---- -----
John Doe
Jacky Test
Johnny Doe
Jack Test
Edit
There is another approach where you rely on the fact that an exception is thrown if you try to add an entry that already exists. In that case, use the .Add(key, value) method and wrap it inside a try{..} catch{..} block.
Without that catch, the error prevents the $all Hashtable to be filled, as it stops at the first duplicate key you try to add.
$second.Keys | ForEach-Object {
try {
$all.Add($_, $second[$_])
}
catch {
# catch the exception in order to carry on adding items
# the effect will be that the values from $first will not be overwritten
# just like with method 2
Write-Warning $_.Exception.Message
}
}
I think your $all_dict already contains what you want (i.e. a hashtable with all 4 entries), but your foreach( $dict in $all_dict ) isn't enumerating the hashtable entries like you expect it to.
The quick answer is to iterate over the Keys collection instead:
foreach( $key in $all.Keys )
{
write-host $key
}
The longer answer is that in your example PowerShell is doing some "helper" things for you with enumeration - foreach($key in $all) is only enumerating over a single object ($all), but write-host $all is evaluating an array of all of the entries in $all and serializing them into a single string:
Compare the behaviour of these two lines and you can see the difference:
PS> foreach($item in #{ "aaa"="bbb"; "ccc"="ddd" }) { write-host $item }
System.Collections.DictionaryEntry System.Collections.DictionaryEntry
PS> foreach($item in #{ "aaa"="bbb"; "ccc"="ddd" }.Keys) { write-host $item }
ccc
aaa
By the way, watch out for if your keys collide - if you try #{ "aaa"="bbb"; "ccc"="ddd" } + #{ "aaa"="eee" } for example, you'll get an error Item has already been added. Key in dictionary: 'aaa' Key being added: 'aaa'. so you might want to find a better way to merge your hashtables rather than just using +.
Am I not understanding the question? You can add them.
$first = #{John = 'Doe'; Johnny = 'Doe'} # hashtables
$second = #{Jacky = 'Test'; Jack = 'Test'}
$all = $first + $second # merge two hashtables
foreach ($i in $all.getenumerator()) { $i } # loops 4 times
So, I'm trying to create a tree-type variable that I could use for data navigation. I've ran into an issue while trying to use reference variables on hash tables in PowerShell. Consider the following code:
$Tree = #{ TextValue = "main"; Children = #() }
$Item = #{ TextValue = "sub"; Children = #() }
$Pointer = [ref] $Tree.Children
$Pointer.Value += $Item
$Tree
When checking reference variable $Pointer, it shows appropriate values, but main variable $Tree is not affected. Is there no way to create references to a hash table element in PowerShell, and I'll have to switch to a 2-dimensional array?
Edit with more info:
I've accepted Mathias' answer, as using List looks like exactly what I need, but there's a little more clarity needed on how arrays and references interact. Try this code:
$Tree1 = #()
$Pointer = $Tree1
$Pointer += 1
Write-Host "tree1 is " $Tree1
$Tree2 = #()
$Pointer = [ref] $Tree2
$Pointer.Value += 1
Write-Host "tree2 is " $Tree2
As you can see from the output, it is possible to get a reference to an array and then modify the size of the array via that reference. I thought it would also work if an array is an element of another array or a hash table, but it does not. PowerShell seems to handle those differently.
I suspect this to be an unfortunate side-effect of the way += works on arrays.
When you use += on a fixed-size array, PowerShell replaces the original array with a new (and bigger) array. We can verify that $Pointer.Value no longer references the same array with GetHashCode():
PS C:\> $Tree = #{ Children = #() }
PS C:\> $Pointer = [ref]$Tree.Children
PS C:\> $Tree.Children.GetHashCode() -eq $Pointer.Value.GetHashCode()
True
PS C:\> $Pointer.Value += "Anything"
PS C:\> $Tree.Children.GetHashCode() -eq $Pointer.Value.GetHashCode()
False
One way of going about this is to avoid using #() and +=.
You could use a List type instead:
$Tree = #{ TextValue = "main"; Children = New-Object System.Collections.Generic.List[psobject] }
$Item = #{ TextValue = "sub"; Children = New-Object System.Collections.Generic.List[psobject] }
$Pointer = [ref] $Tree.Children
$Pointer.Value.Add($Item)
$Tree
To complement Mathias R. Jessen's helpful answer:
Indeed, any array is of fixed size and cannot be extended in place (#() creates an empty [object[]] array).
+= in PowerShell quietly creates a new array, with a copy of all the original elements plus the new one(s), and assigns that to the LHS.
Your use of [ref] is pointless, because $Pointer = $Tree.Children alone is sufficient to copy the reference to the array stored in $Tree.Children.
See bottom section for a discussion of appropriate uses of [ref].
Thus, both $Tree.Children and $Pointer would then contain a reference to the same array, just as $Pointer.Value does in your [ref]-based approach.
Because += creates a new array, however, whatever is on the LHS - be it $Pointer.Value or, without [ref], just $Pointer - simply receives a new reference to the new array, whereas $Tree.Children still points to the old one.
You can verify this by using the direct way to determine whether two variables or expressions "point" to the same instance of a reference type (which all collections are):
PS> [object]::ReferenceEquals($Pointer.Value, $Tree.Children)
False
Note that [object]::ReferenceEquals() is only applicable to reference types, not value types - variables containing the latter store values directly instead of referencing data stored elsewhere.
Mathias' approach solves your problem by using a [List`1] instance instead of an array, which can be extended in place with its .Add() method, so that the reference stored in $Pointer[.Value] never needs to change and continues to refer to the same list as $Tree.Children.
Regarding your follow-up question: appropriate uses of [ref]:
$Tree2 = #()
$Pointer = [ref] $Tree2
In this case, because [ref] is applied to a variable - as designed - it creates an effective variable alias: $Pointer.Value keeps pointing to whatever $Tree2 contains even if different data is assigned to $Tree2 later (irrespective of whether that data is a value-type or reference-type instance):
PS> $Tree2 = 'Now I am a string.'; $Pointer.Value
Now I am a string.
Also note that the typical [ref] use case is to pass variables to functions to .NET API methods that have ref or out parameters; while you can use it with PowerShell scripts and functions too in order to pass by-reference parameters, as shown in the following example, this is best avoided:
# Works, but best avoided in PowerShell code.
PS> function foo { param([ref] $vRef) ++$vRef.Value }; $v=1; foo ([ref] $v); $v
2 # value of $v was incremented via $vRef.Value
By contrast, you cannot use [ref] to create such a persistent indirect reference to data, such as the property of an object contained in a variable, and use of [ref] is essentially pointless there:
$Tree2 = #{ prop = 'initial val' }
$Pointer = [ref] $Tree2.prop # [ref] is pointless here
Later changing $Tree2.prop is not reflected in $Pointer.Value, because $Pointer.Value statically refers to the reference originally stored in $Tree2.prop:
PS> $Tree2.prop = 'later val'; $Pointer.Value
initial val # $Pointer.Value still points to the *original* data
PowerShell should arguably prevent use of [ref] with anything that is not a variable. However, there is a legitimate - albeit exotic - "off-label" use for [ref], for facilitating updating values in the caller's scope from descendant scopes, as shown in the conceptual about_Ref help topic.
You can create the pointer into your tree structure:
$Tree = #{ TextValue = "main"; Children = [ref]#() }
$Item1 = #{ TextValue = "sub1"; Children = [ref]#() }
$Item2 = #{ TextValue = "sub2"; Children = [ref]#() }
$Item3 = #{ TextValue = "subsub"; Children = [ref]#() }
$Pointer = $Tree.Children
$Pointer.Value += $Item1
$Pointer.Value += $Item2
$Pointer.Value.Get(0).Children.Value += $Item3
function Show-Tree {
param ( [hashtable] $Tree )
Write-Host $Tree.TextValue
if ($Tree.Children.Value.Count -ne 0) {
$Tree.Children.Value | ForEach-Object { Show-Tree $_ }
}
}
Show-Tree $Tree
Output:
main
sub1
subsub
sub2
Question:
The intention of my script is to filter out the name and phone number from both text files and add them into a hash table with the name being the key and the phone number being the value.
The problem I am facing is
$name = $_.Current is returning $null, as a result of which my hash is not getting populated.
Can someone tell me what the issue is?
Contents of File1.txt:
Lori
234 east 2nd street
Raleigh nc 12345
9199617621
lori#hotmail.com
=================
Contents of File2.txt:
Robert
2531 10th Avenue
Seattle WA 93413
2068869421
robert#hotmail.com
Sample Code:
$hash = #{}
Switch -regex (Get-content -Path C:\Users\svats\Desktop\Fil*.txt)
{
'^[a-z]+$' { $name = $_.current}
'^\d{10}' {
$phone = $_.current
$hash.Add($name,$phone)
$name=$phone=$null
}
default
{
write-host "Nothing matched"
}
}
$hash
Remove the current property reference from $_:
$hash = #{}
Switch -regex (Get-content -Path C:\Users\svats\Desktop\Fil*.txt)
{
'^[a-z]+$' {
$name = $_
}
'^\d{10}' {
$phone = $_
$hash.Add($name, $phone)
$name = $phone = $null
}
default {
Write-Host "Nothing matched"
}
}
$hash
Mathias R. Jessen's helpful answer explains your problem and offers an effective solution:
it is automatic variable $_ / $PSItem itself that contains the current input object (whatever its type is - what properties $_ / $PSItem has therefore depends on the input object's specific type).
Aside from that, there's potential for making the code both less verbose and more efficient:
# Initialize the output hashtable.
$hash = #{}
# Create the regex that will be used on each input file's content.
# (?...) sets options: i ... case-insensitive; m ... ^ and $ match
# the beginning and end of every *line*.
$re = [regex] '(?im)^([a-z]+|\d{10})$'
# Loop over each input file's content (as a whole, thanks to -Raw).
Get-Content -Raw File*.txt | foreach {
# Look for name and phone number.
$matchColl = $re.Matches($_)
if ($matchColl.Count -eq 2) { # Both found, add hashtable entry.
$hash.Add($matchColl.Value[0], $matchColl.Value[1])
} else {
Write-Host "Nothing matched."
}
}
# Output the resulting hashtable.
$hash
A note on the construction of the .NET [System.Text.RegularExpressions.Regex] object (or [regex] for short), [regex] '(?im)^([a-z]+|\d{10})$':
Embedding matching options IgnoreCase and Multiline as inline options i and m directly in the regex string ((?im) is convenient, in that it allows using simple cast syntax ([regex] ...) to construct the regular-expression .NET object.
However, this syntax may be obscure and, furthermore, not all matching options are available in inline form, so here's the more verbose, but easier-to-read equivalent:
$re = New-Object regex -ArgumentList '^([a-z]+|\d{10})$', 'IgnoreCase, Multiline'
Note that the two options must be specified comma-separated, as a single string, which PowerShell translates into the bit-OR-ed values of the corresponding enumeration values.
other solution, use convertfrom-string
$template=#'
{name*:Lori}
{street:234 east 2nd street}
{city:Raleigh nc 12345}
{phone:9199617621}
{mail:lori#hotmail.com}
{name*:Robert}
{street:2531 10th Avenue}
{city:Seattle WA 93413}
{phone:2068869421}
{mail:robert#hotmail.com}
{name*:Robert}
{street:2531 Avenue}
{city:Seattle WA 93413}
{phone:2068869421}
{mail:robert#hotmail.com}
'#
Get-Content -Path "c:\temp\file*.txt" | ConvertFrom-String -TemplateContent $template | select name, phone
Say I have 2 powershell hashtables one big and one small and, for a specific purpose I want to say they are equal if for the keys in the small one, the keys on the big hastable are the same.
Also I don't know the names of the keys in advance. I can use the following function that uses Invoke-Expression but I am looking for nicer solutions, that don't rely on this.
Function Compare-Subset {
Param(
[hashtable] $big,
[hashtable] $small
)
$keys = $small.keys
Foreach($k in $keys) {
$expression = '$val = $big.' + "$k" + ' -eq ' + '$small.' + "$k"
Invoke-Expression $expression
If(-not $val) {return $False}
}
return $True
}
$big = #{name='Jon'; car='Honda'; age='30'}
$small = #{name = 'Jon'; car='Honda'}
Compare-Subset $big $small
A simple $true/$false can easily be gotten. This will return $true if there are no differences:
[string]::IsNullOrWhiteSpace($($small|Select -Expand Keys|Where{$Small[$_] -ne $big[$_]}))
It checks for all keys in $small to see if the value of that key in $small is the same of the value for that key in $big. It will only output any values that are different. It's wrapped in a IsNullOrWhitespace() method from the [String] type, so if any differences are found it returns false. If you want to list differences just remove that method.
This could be the start of something. Not sure what output you are looking for but this will output the differences between the two groups. Using the same sample data that you provided:
$results = Compare-Object ($big.GetEnumerator() | % { $_.Name }) ($small.GetEnumerator() | % { $_.Name })
$results | ForEach-Object{
$key = $_.InputObject
Switch($_.SideIndicator){
"<="{"Only reference object has the key: '$key'"}
"=>"{"Only difference object has the key: '$key'"}
}
}
In primetime you would want something different but just to show you the above would yield the following output:
Only reference object has the key: 'age'