Concurrent select queries split by row ids Vs one query - postgresql

When SELECT querying one table l, no joins, with billions of rows, is it a good idea to run concurrent queries by splitting the query into multiple queries, split into distinct subsets/ranges by the indexes column, say integer primary key id?
Or does Postgres internally do this already, leading to no significant gain in speed for the end user?
I have two use cases:
getting the total count of rows
getting the list of ids
Edit-1: The query has conditional clause on columns where one of the columns is not indexed, and the other columns are indexed
SELECT id
FROM l
WHERE indexed_column-1='A'
AND indexed_column-2='B'
AND not_indexed_column-1='C'

Postgres has parallelization built in since version 9.6. (Improved in current versions.) It will be much more efficient than manually splitting a SELECT on a big table.
You can set the number of max_parallel_workers to your needs to optimize.
While you are only interested in the id column, it may help to have an index on (id) (given if it's the PK) and fulfill prerequisites for an index-only scan.

In the case where you want to count the number of rows, you can just let PostgreSQL's internal query parallelization do the work. It will be faster, and the result will be consistent.
In the case where you want to get the list of primary keys, it depends on the WHERE conditions of the query. If you are selecting only a few rows, parallel query will do nicely.
If you want all ids of the table, PostgreSQL will probably not choose a parallel plan, because the cost of exchanging so many values between the worker processes will outweigh the advantages of parallelization. In that case, you may be faster with parallel sessions as you envision.

This 4-column composite index would probably be faster than using parallelism:
INDEX(indexed_column-1, indexed_column-2, -- first, in either order
not_indexed_column-1, id)

Related

select 10000 records take too long time in PostgreSQL

my table contains 1 billion records. It is also partitioned by month.Id and datetime is the primary key for the table. When I select
select col1,col2,..col8
from mytable t
inner join cte on t.Id=cte.id and dtime>'2020-01-01' and dtime<'2020-10-01'
It uses index scan, but takes more than 5 minutes to select.
Please suggest me.
Note: I have set work_mem to 1GB. cte table results comes with in 3 seconds.
Well it's the nature of join and it is usually known as a time consuming operation.
First of all, I recommend to use in rather than join. Of course they have got different meanings, but in some cases technically you can use them interchangeably. Check this question out.
Secondly, according to the relation algebra whenever you use join each rows of mytable table is combined with each rows from the second table, and DBMS needs to make a huge temporary table, and finally igonre unsuitable rows. Undoubtedly all the steps and the result would take much time. Before using the Join opeation, it's better to filter your tables (for example mytable based date) and make them smaller, and then use the join operations.

create 2 indexes on same column

I have a table with geometry column.
I have 2 indexes on this column:
create index idg1 on tbl using gist(geom)
create index idg2 on tbl using gist(st_geomfromewkb((geom)::bytea))
I have a lot of queries using the geom (geometry) field.
Which index is used ? (when and why)
If there are two indexes on same column (as I show here), can the select queries run slower than define just one index on column ?
The use of an index depends on how the index was defined, and how the query is invoked. If you SELECT <cols> FROM tbl WHERE geom = <some_value>, then you will use the idg1 index. If you SELECT <cols> FROM tabl WHERE st_geomfromewkb(geom) = <some_value>, then you will use the idg2 index.
A good way to know which index will be used for a particular query is to call the query with EXPLAIN (i.e., EXPLAIN SELECT <cols> FROM tbl WHERE geom = <some_value>) -- this will print out the query plan, which access methods, which indexes, which joins, etc. will be used.
For your question regarding performance, the SELECT queries could run slower because there are more indexes to consider in the query planning phase. In terms of executing a given query plan, a SELECT query will not run slower because by then the query plan has been established and the decision of which index to use has been made.
You will certainly experience performance impact upon INSERT/UPDATE/DELETE of the table, as all indexes will need to be updated with respect to the changes in the table. As such, there will be extra I/O activity on disk to propagate the changes, slowing down the database, especially at scale.
Which index is used depends on the query.
Any query that has
WHERE geom && '...'::geometry
or
WHERE st_intersects(geom, '...'::geometry)
or similar will use the first index.
The second index will only be used for queries that have the expression st_geomfromewkb((geom)::bytea) in them.
This is completely useless: it converts the geometry to EWKB format and back. You should find and rewrite all queries that have this weird construct, then you should drop that index.
Having two indexes on a single column does not slow down your queries significantly (planning will take a bit longer, but I doubt if you can measure that). You will have a performance penalty for every data modification though, which will take almost twice as long as with a single index.

Cassandra efficient table walk

I'm currently working on a benchmark (which is part of my bachelor thesis) that compares SQL and NoSQL Databases based on an abstract data model an abstract queries to achieve fair implementation on all systems.
I'm currently working on the implementation of a query that is specified as follows:
I have a table in Cassandra that is specified as follows:
CREATE TABLE allocated(
partition_key int,
financial_institution varchar,
primary_uuid uuid,
report_name varchar,
view_name varchar,
row_name varchar,
col_name varchar,
amount float,
PRIMARY KEY (partition_key, report_name, primary_uuid));
This table contains about 100,000,000 records (~300GB).
We now need to calculate the sum for the field "amount" for every possible combination of report_name, view_name, col_name and row_name.
In SQL this would be quite easy, just select sum (amount) and group it by the fields you want.
However, since Cassandra does not support these operations (which is perfectly fine) I need to achieve this on another way.
Currently I achieve this by doing a full-table walk, processing each record and storing the sum in a HashMap in Java for each combination.
The prepared statement I use is as follows:
SELECT
partition_key,
financial_institution,
report_name,
view_name,
col_name,
row_name,
amount
FROM allocated;
That works partially on machines with lots on RAM for both, cassandra and the Java app, but crashes on smaller machines.
Now I'm wondering whether it's possible to achieve this on a faster way?
I could imagine using the partition_key, which serves also as the cassandra partition key and do this for every partition (I have 5 of them).
Also I though of doing this multithreaded by assigning every partition and report to a seperate thread and running it parallel. But I guess this would cause a lot of overhead on the application side.
Now to the actual question: Would you recommend another execution strategy to achieve this?
Maybe I still think too much in a SQL-like way.
Thank you for you support.
Here are two ideas that may help you.
1) You can efficiently scan rows in any table using the following approach. Consider a table with PRIMARY KEY (pk, sk, tk). Let's use a fetch size of 1000, but you can try other values.
First query (Q1):
select whatever_columns from allocated limit 1000;
Process these and then record the value of the three columns that form the primary key. Let's say these values are pk_val, sk_val, and tk_val. Here is your next query (Q2):
select whatever_columns from allocated where token(pk) = token(pk_val) and sk = sk_val and tk > tk_val limit 1000;
The above query will look for records for the same pk and sk, but for the next values of tk. Keep repeating as long as you keep getting 1000 records. When get anything less, you ignore the tk, and do greater on sk. Here is the query (Q3):
select whatever_columns from allocated where token(pk) = token(pk_val) and sk > sk_val limit 1000;
Again, keep doing this as long as you get 1000 rows. Once you are done, you run the following query (Q4):
select whatever_columns from allocated where token(pk) > token(pk_val) limit 1000;
Now, you again use the pk_val, sk_val, tk_val from the last record, and run Q2 with these values, then Q3, then Q4.....
You are done when Q4 returns less than 1000.
2) I am assuming that 'report_name, view_name, col_name and row_name' are not unique and that's why you maintain a hashmap to keep track of the total amount whenever you see the same combination again. Here is something that may work better. Create a table in cassandra where key is a combination of these four values (maybe delimited). If there were three, you could have simply used a composite key for those three. Now, you also need a column called amounts which is a list. As you are scanning the allocate table (using the approach above), for each row, you do the following:
update amounts_table set amounts = amounts + whatever_amount where my_primary_key = four_col_values_delimited;
Once you are done, you can scan this table and compute the sum of the list for each row you see and dump it wherever you want. Note that since there is only one key, you can scan using only token(primary_key) > token(last_value_of_primary_key).
Sorry if my description is confusing. Please let me know if this helps.

Optimization of count query for PostgreSQL

I have a table in postgresql that contains an array which is updated constantly.
In my application i need to get the number of rows for which a specific parameter is not present in that array column. My query looks like this:
select count(id)
from table
where not (ARRAY['parameter value'] <# table.array_column)
But when increasing the amount of rows and the amount of executions of that query (several times per second, possibly hundreds or thousands) the performance decreses a lot, it seems to me that the counting in postgresql might have a linear order of execution (I’m not completely sure of this).
Basically my question is:
Is there an existing pattern I’m not aware of that applies to this situation? what would be the best approach for this?
Any suggestion you could give me would be really appreciated.
PostgreSQL actually supports GIN indexes on array columns. Unfortunately, it doesn't seem to be usable for NOT ARRAY[...] <# indexed_col, and GIN indexes are unsuitable for frequently-updated tables anyway.
Demo:
CREATE TABLE arrtable (id integer primary key, array_column integer[]);
INSERT INTO arrtable(1, ARRAY[1,2,3,4]);
CREATE INDEX arrtable_arraycolumn_gin_arr_idx
ON arrtable USING GIN(array_column);
-- Use the following *only* for testing whether Pg can use an index
-- Do not use it in production.
SET enable_seqscan = off;
explain (buffers, analyze) select count(id)
from arrtable
where not (ARRAY[1] <# arrtable.array_column);
Unfortunately, this shows that as written we can't use the index. If you don't negate the condition it can be used, so you can search for and count rows that do contain the search element (by removing NOT).
You could use the index to count entries that do contain the target value, then subtract that result from a count of all entries. Since counting all rows in a table is quite slow in PostgreSQL (9.1 and older) and requires a sequential scan this will actually be slower than your current query. It's possible that on 9.2 an index-only scan can be used to count the rows if you have a b-tree index on id, in which case this might actually be OK:
SELECT (
SELECT count(id) FROM arrtable
) - (
SELECT count(id) FROM arrtable
WHERE (ARRAY[1] <# arrtable.array_column)
);
It's guaranteed to perform worse than your original version for Pg 9.1 and below, because in addition to the seqscan your original requires it also needs an GIN index scan. I've now tested this on 9.2 and it does appear to use an index for the count, so it's worth exploring for 9.2. With some less trivial dummy data:
drop index arrtable_arraycolumn_gin_arr_idx ;
truncate table arrtable;
insert into arrtable (id, array_column)
select s, ARRAY[1,2,s,s*2,s*3,s/2,s/4] FROM generate_series(1,1000000) s;
CREATE INDEX arrtable_arraycolumn_gin_arr_idx
ON arrtable USING GIN(array_column);
Note that a GIN index like this will slow updates down a LOT, and is quite slow to create in the first place. It is not suitable for tables that get updated much at all - like your table.
Worse, the query using this index takes up to twice times as long as your original query and at best half as long on the same data set. It's worst for cases where the index is not very selective like ARRAY[1] - 4s vs 2s for the original query. Where the index is highly selective (ie: not many matches, like ARRAY[199]) it runs in about 1.2 seconds vs the original's 3s. This index simply isn't worth having for this query.
The lesson here? Sometimes, the right answer is just to do a sequential scan.
Since that won't do for your hit rates, either maintain a materialized view with a trigger as #debenhur suggests, or try to invert the array to be a list of parameters that the entry does not have so you can use a GiST index as #maniek suggests.
Is there an existing pattern I’m not aware of that applies to this
situation? what would be the best approach for this?
Your best bet in this situation might be to normalize your schema. Split the array out into a table. Add a b-tree index on the table of properties, or order the primary key so it's efficiently searchable by property_id.
CREATE TABLE demo( id integer primary key );
INSERT INTO demo (id) SELECT id FROM arrtable;
CREATE TABLE properties (
demo_id integer not null references demo(id),
property integer not null,
primary key (demo_id, property)
);
CREATE INDEX properties_property_idx ON properties(property);
You can then query the properties:
SELECT count(id)
FROM demo
WHERE NOT EXISTS (
SELECT 1 FROM properties WHERE demo.id = properties.demo_id AND property = 1
)
I expected this to be a lot faster than the original query, but it's actually much the same with the same sample data; it runs in the same 2s to 3s range as your original query. It's the same issue where searching for what is not there is much slower than searching for what is there; if we're looking for rows containing a property we can avoid the seqscan of demo and just scan properties for matching IDs directly.
Again, a seq scan on the array-containing table does the job just as well.
I think with Your current data model You are out of luck. Try to think of an algorithm that the database has to execute for Your query. There is no way it could work without sequential scanning of data.
Can You arrange the column so that it stores the inverse of data (so that the the query would be select count(id) from table where ARRAY[‘parameter value’] <# table.array_column) ? This query would use a gin/gist index.

Is PostgreSQL IN() statement still fast with up to 1000 arguments?

I'm querying to return all rows from a table except those that are in some list of values that is constant at query time. E.g. SELECT * FROM table WHERE id IN (%), and % is guaranteed to be a list of values, not be a subquery. However, this list of values may be up to 1000 elements long in some cases. Should I limit this to a smaller sublist (as few as 50-100 elements is as low as I can go, in this case) or will there be a negligible performance gain?
I assume it's a large table, otherwise it wouldn't matter much.
Depending on table size and number of keys, this may turn into a sequence scan. If there are many IN keys, Postgres often chooses not to use an index for it. The more keys, the bigger the chance of a sequence scan.
If you use another indexed column in WHERE, like:
select * from table where id in (%) and my_date > '2010-01-01';
It's likely to fetch all rows matching the indexed (my_date) columns, and then perform an in-memory scan on them.
Using a JOIN to a persistent or temporary table may, but does not have to help. It still will need to locate all the rows, either with a nested loop (unlikely for large data), or for a hash/merge join.
I would say the solution is:
Use as few IN keys as possible.
Use other criteria for indexing and querying whenever possible. If IN requires an in-memory scan of all rows, at least there will be fewer of them thanks to additional criteria.
Use a temporary table to JOIN, gives better performance and has no limits. An IN() having a 1000 arguments, will give you problems in any database.