How to get the ID of the currently executing ZIO fiber from side effecting code - scala

I know that I can get hold of the ID of the currently executing fiber by calling
ZIO.descriptor.map(_.id)
However, what I want, is an impure function that I can call from side effecting code, lets define it like
def getCurrentFiberId(): Option[FiberId]
so that
for {
fiberId <- ZIO.descriptor.map(_.id)
maybeId <- UIO(getCurrentFiberId())
} yield maybeId.contains(fiberId)
yields true. Is it possible to define such a function, and if so, how? Note that this question is strongly related to How to access fiber local data from side-effecting code in ZIO.

Not possible. That information is contained in an instance of a class called FiberContext which is practically the core of the ZIO Runtime in charge of interpreting the Effects.
Also, such class is internal implementation and understandably package private.
Additionally there's not only one instance for it, but one for each time you unsafeRun an effect and one more each time a fork is interpreted.
As execution of an effect is not bound to a Thread, ThreadLocal is not used and so, no hope of somehow extracting that info the way you want.

Related

How to convert `fs2.Stream[IO, T]` to `Iterator[T]` in Scala

Need to fill in the methods next and hasNext and preserve laziness
new Iterator[T] {
val stream: fs2.Stream[IO, T] = ...
def next(): T = ???
def hasNext(): Boolean = ???
}
But cannot figure out how an earth to do this from a fs2.Stream? All the methods on a Stream (or on the "compiled" thing) are fairly useless.
If this is simply impossible to do in a reasonable amount of code, then that itself is a satisfactory answer and we will just rip out fs2.Stream from the codebase - just want to check first!
fs2.Stream, while similar in concept to Iterator, cannot be converted to one while preserving laziness. I'll try to elaborate on why...
Both represent a pull-based series of items, but the way in which they represent that series and implement the laziness differs too much.
As you already know, Iterator represents its pull in terms of the next() and hasNext methods, both of which are synchronous and blocking. To consume the iterator and return a value, you can directly call those methods e.g. in a loop, or use one of its many convenience methods.
fs2.Stream supports two capabilities that make it incompatible with that interface:
cats.effect.Resource can be included in the construction of a Stream. For example, you could construct a fs2.Stream[IO, Byte] representing the contents of a file. When consuming that stream, even if you abort early or do some strange flatMap, the underlying Resource is honored and your file handle is guaranteed to be closed. If you were trying to do the same thing with iterator, the "abort early" case would pose problems, forcing you to do something like Iterator[Byte] with Closeable and the caller would have to make sure to .close() it, or some other pattern.
Evaluation of "effects". In this context, effects are types like IO or Future, where the process of obtaining the value may perform some possibly-asynchronous action, and may perform side-effects. Asynchrony poses a problem when trying to force the process into a synchronous interface, since it forces you to block your current thread to wait for the asynchronous answer, which can cause deadlocks if you aren't careful. Libraries like cats-effect strongly discourage you from calling methods like unsafeRunSync.
fs2.Stream does allow for some special cases that prevent the inclusion of Resource and Effects, via its Pure type alias which you can use in place of IO. That gets you access to Stream.PureOps, but that only gets you methods that consume the whole stream by building a collection; the laziness you want to preserve would be lost.
Side note: you can convert an Iterator to a Stream.
The only way to "convert" a Stream to an Iterator is to consume it to some collection type via e.g. .compile.toList, which would get you an IO[List[T]], then .map(_.iterator) that to get an IO[Iterator[T]]. But ultimately that doesn't fit what you're asking for since it forces you to consume the stream to a buffer, breaking laziness.
#Dima mentioned the "XY Problem", which was poorly-received since they didn't really elaborate (initially) on the incompatibility, but they're right. It would be helpful to know why you're trying to make a Stream-to-Iterator conversion, in case there's some other approach that would serve your overall goal instead.

Parenthesis for not pure functions

I know that that I should use () by convention if a method has side effects
def method1(a: String): Unit = {
//.....
}
//or
def method2(): Unit = {
//.....
}
Do I have to do the same thing if a method doesn't have side effects but it's not pure, doesn't have any parameters and, of course, it returns the different results each time it's being called?
def method3() = getRemoteSessionId("login", "password")
Edit: After reviewing Luigi Plinge's comment, I came to think that I should rewrite the answer. This is also not a clear yes/no answer, but some suggestions.
First: The case regarding var is an interesting one. Declaring a var foo gives you a getter foo without parentheses. Obviously it is an impure call, but it does not have a side effect (it does not change anything unobserved by the caller).
Second, regarding your question: I now would not argue that the problem with getRemoteSessionId is that it is impure, but that it actually makes the server maintain some session login for you, so clearly you interfere destructively with the environment. Then method3() should be written with parentheses because of this side-effect nature.
A third example: Getting the contents of a directory should thus be written file.children and not file.children(), because again it is an impure function but should not have side effects (other than perhaps a read-only access to your file system).
A fourth example: Given the above, you should write System.currentTimeMillis. I do tend to write System.currentTimeMillis() however...
Using this forth case, my tentative answer would be: Parentheses are preferable when the function has either a side-effect; or if it is impure and depending on state not under the control of your program.
With this definition, it would not matter whether getRemoteSessionId has known side-effects or not. On the other hand, it implies to revert to writing file.children()...
The Scala style guide recommends:
Methods which act as accessors of any sort (either encapsulating a field or a logical property) should be declared without parentheses except if they have side effects.
It doesn't mention any other use case besides accessors. So the question boils down to whether you regard this method as an accessor, which in turns depends on how the rest of the class is set up and perhaps also on the (intended) call sites.

Why are SessionVars in Lift implemented using singletons?

One typical way of managing state in Lift is to create a singleton object extending SessionVar, like in this example taken from the documentation:
object MySnippetCompanion {
object mySessionVar extends SessionVar[String]("hello")
}
The case for using SessionVars is clear and I've been using them in practice as needed. I also roughly understand how they work inside.
Still, I can't help but wonder why the mechanism for "session variables", which are clearly associated with the current session (usually just one out of many sessions in the system), was designed to be used via a singleton? This goes so against my intuition that at first glance I was tempted to believe that Lift was somehow able to override Scala's language features and to make object mean something different that in regular Scala.
Even though I now understand how it works, I can't grasp the rationale for such a design, which, at least for me, breaks the rule of least astonishment. Can someone point out any advantages or perhaps explain why such a design decision could have been made?
Session variables in Lift use Scala's DynamicVariable. Basically they allow you to statically reference a variable in a code-block and then later on call the code and substitute a value:
import scala.util.DynamicVariable
val x = new DynamicVariable(1)
def printIt() {
println(x.value)
}
printIt()
//> 1
x.withValue(2)(printIt())
//> 2
So each time a request is handled, the scope of these dynamic variables is changed to the current session, completely hiding the state change of the current session to you as a programmer.
The other option would be to pass around a "sessionID" object which you would have to use when you want to access session specific data. Not really handy.
The reason you have to use the object keyword is that object is unique in that it defines both a value and a class. This allows Lift to call getClass to get a name that uniquely identifies this SessionVar vs. any other one, which Lift needs in order to serialize and deserialize every piece of session state in the right place(s). Furthermore if the SessionVar is in a class that has two instances (for instance a snippet rendered in two tabs), they will both refer to the same piece of session state. (The flip side of the coin is that the same SessionVar instance can be referenced by two different sessions and mean the right thing to each.)
Actually at times this is insufficient --- for instance, if you define a SessionVar in a trait, and have two different classes that inherit the trait, but you need them two have two different values. The solution in that case is to override the def for the "name salt", which is combined with getClass to identify the SessionVar.

akka sending a closure to remote actor

Background
i want to send a closure to a remote actor. remote actor should run the closure on its data and send back the result. May be it is not advisable, but for curiosity's sake that's i want to do now
But i observe that if a closure is created as an anonymous function, it captures the outer object also and tries to marshal it, which fails if the outer object is not serializable, as in this case.
class Client(server: ActorRef) extends Actor {
var every = 2
override def preStart() = {
println("client started. sending message....")
server ! new Message((x) => x % every == 0)
}
}
the above code generates exception while calling the remote actor. i could define a local variable in the method preStart()
val every_ = every
and use it in place of actor member variable. But i feel it is a workaround not a solution. and i will have to be very careful if the closure is any bit more complex.
Alternative is to define a class inheriting from Function1[A,B] and send its instances as closure.
class MyFunc(every : Int) extends Function1[Int,Boolean] with Serializable {
def apply(v1 :Int) : Boolean = {
v1 % every == 0
}
}
server ! new Message(new MyFunc(every))
But this separates the closure definition from the place it is used, and defeats the whole purpose of using a functional language. and also makes defining the closure logic more difficult.
Specific Query
Is there a way i can defer defining the body of the Function1.apply and assign the body of apply when i create the instance of MyFunc from a locally defined closure?
e.g.
server ! new Message(new MyFunc(every){ // not valid scala code
x % every == 0
})
where every is a local variable?
basically i want to combine the two approaches i.e. send an object of Function1 over to remote actor with the body of Function1 defined by an anon function defined in place where Function1 instance is created.
Thanks,
Sure, you could send behaviour to actor, but it considered to be a bad practice, and your questions is a good answer on question: "why".
As BGR pointed out there is special section in documentation on this question, but it has no example.
So, when you sending a closure as message you sending some extra "implicit" state with it. It could be not mutable as said in documentation, but even in this case it can create problems.
The problem with scala here is that it not strictly functional language - it is multiparadigm language. In other words you could have code in functional paradigm side by side with code in imperative style. There is no such problems in, for example haskell, which is purely functional.
In case of your "specific query" I'll suggest you to use set of predefined functions. This is full equivalent of variant with closures but with a bit chatty syntax. Since you do not generate code during runtime all functions you use are defined in limited set and (looks like) parameterized by value. This makes your code not so flexible like with closures, but in the end it will be equivalent cases.
So, as a leitmotif of all my post: if you going to send behaviour to actor it should be rock solid atomic (in meaning have no any dependencies)

scala - is it possible to force immutability on an object?

I mean if there's some declarative way to prevent an object from changing any of it's members.
In the following example
class student(var name:String)
val s = new student("John")
"s" has been declared as a val, so it will always point to the same student.
But is there some way to prevent s.name from being changed by just declaring it like immutable???
Or the only solution is to declare everything as val, and manually force immutability?
No, it's not possible to declare something immutable. You have to enforce immutability yourself, by not allowing anyone to change it, that is remove all ways of modifying the class.
Someone can still modify it using reflection, but that's another story.
Scala doesn't enforce that, so there is no way to know. There is, however, an interesting compiler-plugin project named pusca (I guess it stands for Pure-Scala). Pure is defined there as not mutating a non-local variable and being side-effect free (e.g. not printing to the console)—so that calling a pure method repeatedly will always yield the same result (what is called referentially transparent).
I haven't tried out that plug-in myself, so I can't say if it's any stable or usable already.
There is no way that Scala could do this generally.
Consider the following hypothetical example:
class Student(var name : String, var course : Course)
def stuff(course : Course) {
magically_pure_val s = new Student("Fredzilla", course)
someFunctionOfStudent(s)
genericHigherOrderFunction(s, someFunctionOfStudent)
course.someMethod()
}
The pitfalls for any attempt to actually implement that magically_pure_val keyword are:
someFunctionOfStudent takes an arbitrary student, and isn't implemented in this compilation unit. It was written/compiled knowing that Student consists of two mutable fields. How do we know it doesn't actually mutate them?
genericHigherOrderFunction is even worse; it's going to take our Student and a function of Student, but it's written polymorphically. Whether or not it actually mutates s depends on what its other arguments are; determining that at compile time with full generality requires solving the Halting Problem.
Let's assume we could get around that (maybe we could set some secret flags that mean exceptions get raised if the s object is actually mutated, though personally I wouldn't find that good enough). What about that course field? Does course.someMethod() mutate it? That method call isn't invoked from s directly.
Worse than that, we only know that we'll have passed in an instance of Course or some subclass of Course. So even if we are able to analyze a particular implementation of Course and Course.someMethod and conclude that this is safe, someone can always add a new subclass of Course whose implementation of someMethod mutates the Course.
There's simply no way for the compiler to check that a given object cannot be mutated. The pusca plugin mentioned by 0__ appears to detect purity the same way Mercury does; by ensuring that every method is known from its signature to be either pure or impure, and by raising a compiler error if the implementation of anything declared to be pure does anything that could cause impurity (unless the programmer promises that the method is pure anyway).[1]
This is quite a different from simply declaring a value to be completely (and deeply) immutable and expecting the compiler to notice if any of the code that could touch it could mutate it. It's also not a perfect inference, just a conservative one
[1]The pusca README claims that it can infer impurity of methods whose last expression is a call to an impure method. I'm not quite sure how it can do this, as checking if that last expression is an impure call requires checking if it's calling a not-declared-impure method that should be declared impure by this rule, and the implementation might not be available to the compiler at that point (and indeed could be changed later even if it is). But all I've done is look at the README and think about it for a few minutes, so I might be missing something.