Calculating geodesic distance in MATLAB - matlab

I want to calculate geodesic distance between non-adjacent nodes in an directed graph. As in the following matrix (W), zeros reperesent that those nodes are non-adjacent and other values show weights of the edges corresponding nodes. I calculated the distance according to the following equation:
I used the MATLAB function graphshortestpath(). However, I'm afraid this function couldn't provide what I am looking for. So the question is what is another way to calculate such a distance? Is there another function in MATLAB for that? Is it possible that making the matrix sparse affects final result?
Program code:
N=6; % Size of matrix W
W=[0,0.797944993710195,0,0,0,0;0.495326358306295,0,0.164911895411107,0,0,0;0,0.0530273831645896,0,0.00901073533222818,0,0;0,0,0.00709165683115063,0,0.438584093809830,0;0,0,0,0.397895339311598,0,0.000916573989905329;0,0,0,0,0.00104307323830613,0]; %Connectivity matrix
Geo_dist=zeros(N); %temporary variable for geodesic distance measurement
W_sparse=sparse(W); %Making W sparse because the matlab function works only with sparse matrix
for g=1:N
for h=1:N
if W(g,h)==0 & g~=h;
Geo_dist(g,h)=graphshortestpath(W_sparse,g,h,'directed',false);
end
end
end

Can you use bwdistgeodesic or graydist in the Image Processing Toolbox directly on the image grid?
https://www.mathworks.com/help/images/ref/graydist.html
https://www.mathworks.com/help/images/ref/bwdistgeodesic.html
Or if you prefer something smoother, imsegfmm will let you use fast marching method to compute the geodesic distance if you look at the doc example:
https://www.mathworks.com/help/images/ref/imsegfmm.html
I'm assuming in my response that you have gridded image data and that this isn't a graph of arbitrary connectivity since this is tagged "image-processing".

Related

How to compute distance and estimate quality of heterogeneous grids in Matlab?

I want to evaluate the grid quality where all coordinates differ in the real case.
Signal is of a ECG signal where average life-time is 75 years.
My task is to evaluate its age at the moment of measurement, which is an inverse problem.
I think 2D approximation of the 3D case is hard (done here by Abo-Zahhad) with with 3-leads (2 on chest and one at left leg - MIT-BIT arrhythmia database):
where f is a piecewise continuous function in R^2, \epsilon is the error matrix and A is a 2D matrix.
Now, I evaluate the average grid distance in x-axis (time) and average grid distance in y-axis (energy).
I think this can be done by Matlab's Image Analysis toolbox.
However, I am not sure how complete the toolbox's approaches are.
I think a transform approach must be used in the setting of uneven and noncontinuous grids. One approach is exact linear time euclidean distance transforms of grid line sampled shapes by Joakim Lindblad et all.
The method presents a distance transform (DT) which assigns to each image point its smallest distance to a selected subset of image points.
This kind of approach is often a basis of algorithms for many methods in image analysis.
I tested unsuccessfully the case with bwdist (Distance transform of binary image) with chessboard (returns empty square matrix), cityblock, euclidean and quasi-euclidean where the last three options return full matrix.
Another pseudocode
% https://stackoverflow.com/a/29956008/54964
%// retrieve picture
imgRGB = imread('dummy.png');
%// detect lines
imgHSV = rgb2hsv(imgRGB);
BW = (imgHSV(:,:,3) < 1);
BW = imclose(imclose(BW, strel('line',40,0)), strel('line',10,90));
%// clear those masked pixels by setting them to background white color
imgRGB2 = imgRGB;
imgRGB2(repmat(BW,[1 1 3])) = 255;
%// show extracted signal
imshow(imgRGB2)
where I think the approach will not work here because the grids are not necessarily continuous and not necessary ideal.
pdist based on the Lumbreras' answer
In the real examples, all coordinates differ such that pdist hamming and jaccard are always 1 with real data.
The options euclidean, cytoblock, minkowski, chebychev, mahalanobis, cosine, correlation, and spearman offer some descriptions of the data.
However, these options make me now little sense in such full matrices.
I want to estimate how long the signal can live.
Sources
J. Müller, and S. Siltanen. Linear and nonlinear inverse problems with practical applications.
EIT with the D-bar method: discontinuous heart-and-lungs phantom. http://wiki.helsinki.fi/display/mathstatHenkilokunta/EIT+with+the+D-bar+method%3A+discontinuous+heart-and-lungs+phantom Visited 29-Feb 2016.
There is a function in Matlab defined as pdist which computes the pairwisedistance between all row elements in a matrix and enables you to choose the type of distance you want to use (Euclidean, cityblock, correlation). Are you after something like this? Not sure I understood your question!
cheers!
Simply, do not do it in the post-processing. Those artifacts of the body can be about about raster images, about the viewer and/or ... Do quality assurance in the signal generation/processing step.
It is much easier to evaluate the original signal than its views.

Generate random samples from arbitrary discrete probability density function in Matlab

I've got an arbitrary probability density function discretized as a matrix in Matlab, that means that for every pair x,y the probability is stored in the matrix:
A(x,y) = probability
This is a 100x100 matrix, and I would like to be able to generate random samples of two dimensions (x,y) out of this matrix and also, if possible, to be able to calculate the mean and other moments of the PDF. I want to do this because after resampling, I want to fit the samples to an approximated Gaussian Mixture Model.
I've been looking everywhere but I haven't found anything as specific as this. I hope you may be able to help me.
Thank you.
If you really have a discrete probably density function defined by A (as opposed to a continuous probability density function that is merely described by A), you can "cheat" by turning your 2D problem into a 1D problem.
%define the possible values for the (x,y) pair
row_vals = [1:size(A,1)]'*ones(1,size(A,2)); %all x values
col_vals = ones(size(A,1),1)*[1:size(A,2)]; %all y values
%convert your 2D problem into a 1D problem
A = A(:);
row_vals = row_vals(:);
col_vals = col_vals(:);
%calculate your fake 1D CDF, assumes sum(A(:))==1
CDF = cumsum(A); %remember, first term out of of cumsum is not zero
%because of the operation we're doing below (interp1 followed by ceil)
%we need the CDF to start at zero
CDF = [0; CDF(:)];
%generate random values
N_vals = 1000; %give me 1000 values
rand_vals = rand(N_vals,1); %spans zero to one
%look into CDF to see which index the rand val corresponds to
out_val = interp1(CDF,[0:1/(length(CDF)-1):1],rand_vals); %spans zero to one
ind = ceil(out_val*length(A));
%using the inds, you can lookup each pair of values
xy_values = [row_vals(ind) col_vals(ind)];
I hope that this helps!
Chip
I don't believe matlab has built-in functionality for generating multivariate random variables with arbitrary distribution. As a matter of fact, the same is true for univariate random numbers. But while the latter can be easily generated based on the cumulative distribution function, the CDF does not exist for multivariate distributions, so generating such numbers is much more messy (the main problem is the fact that 2 or more variables have correlation). So this part of your question is far beyond the scope of this site.
Since half an answer is better than no answer, here's how you can compute the mean and higher moments numerically using matlab:
%generate some dummy input
xv=linspace(-50,50,101);
yv=linspace(-30,30,100);
[x y]=meshgrid(xv,yv);
%define a discretized two-hump Gaussian distribution
A=floor(15*exp(-((x-10).^2+y.^2)/100)+15*exp(-((x+25).^2+y.^2)/100));
A=A/sum(A(:)); %normalized to sum to 1
%plot it if you like
%figure;
%surf(x,y,A)
%actual half-answer starts here
%get normalized pdf
weight=trapz(xv,trapz(yv,A));
A=A/weight; %A normalized to 1 according to trapz^2
%mean
mean_x=trapz(xv,trapz(yv,A.*x));
mean_y=trapz(xv,trapz(yv,A.*y));
So, the point is that you can perform a double integral on a rectangular mesh using two consecutive calls to trapz. This allows you to compute the integral of any quantity that has the same shape as your mesh, but a drawback is that vector components have to be computed independently. If you only wish to compute things which can be parametrized with x and y (which are naturally the same size as you mesh), then you can get along without having to do any additional thinking.
You could also define a function for the integration:
function res=trapz2(xv,yv,A,arg)
if ~isscalar(arg) && any(size(arg)~=size(A))
error('Size of A and var must be the same!')
end
res=trapz(xv,trapz(yv,A.*arg));
end
This way you can compute stuff like
weight=trapz2(xv,yv,A,1);
mean_x=trapz2(xv,yv,A,x);
NOTE: the reason I used a 101x100 mesh in the example is that the double call to trapz should be performed in the proper order. If you interchange xv and yv in the calls, you get the wrong answer due to inconsistency with the definition of A, but this will not be evident if A is square. I suggest avoiding symmetric quantities during the development stage.

Sampling internediate points from x-y discrete mapping itself in Matlab

I have plotted a piece-wise defined continuous linear function comprising of several oblique straight lines joined end-to-end:-
x=[0,1/4,1/2,3/4,1];
oo=[1.23 2.31 1.34 5.69 7] % edit
y=[oo(1),oo(2),oo(3),oo(4),oo(5)];
plot(x,y,'g--')
I now wish to sample points from this plot itself, say i want the y corresponding to x=0.89. How to achieve that using Matlab? Is there a special function in-built in Matlab?
Yes, there's a built-in function for that: interp1:
vq = interp1(x,v,xq) returns interpolated values of a 1-D function at specific query points using linear interpolation. Vector x contains the sample points, and v contains the corresponding values, v(x). Vector xq contains the coordinates of the query points.
[...]
See the linked documentation for further options. For example, you can specify the interpolation method (default is linear), or whether you want to extrapolate (i.e. allow for xq values to lie outside the original x range).

matlab: cdfplot of relative error

The figure shown above is the plot of cumulative distribution function (cdf) plot for relative error (attached together the code used to generate the plot). The relative error is defined as abs(measured-predicted)/(measured). May I know the possible error/interpretation as the plot is supposed to be a smooth curve.
X = load('measured.txt');
Xhat = load('predicted.txt');
idx = find(X>0);
x = X(idx);
xhat = Xhat(idx);
relativeError = abs(x-xhat)./(x);
cdfplot(relativeError);
The input data file is a 4x4 matrix with zeros on the diagonal and some unmeasured entries (represent with 0). Appreciate for your kind help. Thanks!
The plot should be a discontinuous one because you are using discrete data. You are not plotting an analytic function which has an explicit (or implicit) function that maps, say, x to y. Instead, all you have is at most 16 points that relates x and y.
The CDF only "grows" when new samples are counted; otherwise its value remains steady, just because there isn't any satisfying sample that could increase the "frequency".
You can check the example in Mathworks' `cdfplot1 documentation to understand the concept of "empirical cdf". Again, only when you observe a sample can you increase the cdf.
If you really want to "get" a smooth curve, either 1) add more points so that the discontinuous line looks smoother, or 2) find any statistical model of whatever you are working on, and plot the analytic function instead.

How to use matlab contourf to draw two-dimensional decision boundary

I finished an SVM training and got data like X, Y. X is the feature matrix only with 2 dimensions, and Y is the classification labels. Because the data is only in two dimensions, so I would like to draw a decision boundary to show the surface of support vectors.
I use contouf in Matlab to do the trick, but really find it hard to understand how to use the function.
I wrote like:
#1 try:
contourf(X);
#2 try:
contourf([X(:,1) X(:,2) Y]);
#3 try:
Z(:,:,1)=X(Y==1,:);
Z(:,:,2)=X(Y==2,:);
contourf(Z);
all these things do not correctly. And I checked the Matlab help files, most of them make Z as a function, so I really do not know how to form the correct Z matrix.
If you're using the svmtrain and svmclassify commands from Bioinformatics Toolbox, you can just use the additional input argument (...'showplot', true), and it will display a scatter plot with a decision boundary and the support vectors highlighted.
If you're using your own SVM, or a third-party tool such as libSVM, what you probably need to do is to:
Create a grid of points in your 2D input feature space using the meshgrid command
Classify those points using your trained SVM
Plot the grid of points and the classifications using contourf.
For example, in kind-of-MATLAB-but-pseudocode, assuming your input features are called X1 and X2:
numPtsInGrid = 100;
x1Range = linspace(x1lower, x1upper, numPtsInGrid);
x2Range = linspace(x2lower, x2upper, numPtsInGrid);
[X1, X2] = meshgrid(x1Range, x2Range);
Z = classifyWithMySVMSomehow([X1(:), X2(:)]);
contourf(X1(:), X2(:), Z(:))
Hope that helps.
I know it's been a while but I will give it a try in case someone else will come up with that issue.
Assume we have a 2D training set so as to train an SVM model, in other words the feature space is a 2D space. We know that a kernel SVM model leads to a score (or decision) function of the form:
f(x) = sumi=1 to N(aiyik(x,xi)) + b
Where N is the number of support vectors, xi is the i -th support vector, ai is the estimated Lagrange multiplier and yi the associated class label. Values(scores) of decision function in way depict the distance of the observation x frοm the decision boundary.
Now assume that for every point (X,Y) in the 2D feature space we can find the corresponding score of the decision function. We can plot the results in the 3D euclidean space, where X corresponds to values of first feature vector f1, Y to values of second feature f2, and Z to the the return of decision function for every point (X,Y). The intersection of this 3D figure with the Z=0 plane gives us the decision boundary into the two-dimensional feature space. In other words, imagine that the decision boundary is formed by the (X,Y) points that have scores equal to 0. Seems logical right?
Now in MATLAB you can easily do that, by first creating a grid in X,Y space:
d = 0.02;
[x1Grid,x2Grid] = meshgrid(minimum_X:d:maximum_X,minimum_Y:d:maximum_Y);
d is selected according to the desired resolution of the grid.
Then for a trained model SVMModel find the scores of every grid's point:
xGrid = [x1Grid(:),x2Grid(:)];
[~,scores] = predict(SVMModel,xGrid);
Finally plot the decision boundary
figure;
contour(x1Grid,x2Grid,reshape(scores(:,2),size(x1Grid)),[0 0],'k');
Contour gives us a 2D graph where information about the 3rd dimension is depicted as solid lines in the 2D plane. These lines implie iso-response values, in other words (X,Y) points with same Z value. In our occasion contour gives us the decision boundary.
Hope I helped to make all that more clear. You can find very useful information and examples in the following links:
MATLAB's example
Representation of decision function in 3D space