Kubernetes cluster recovery after linux host reboot - kubernetes

We are still in a design phase to move away from monolithic architecture towards Microservices with Docker and Kubernetes. We did some basic research on Docker and Kubernetes and got some understanding. We still have couple of open question considering we will be creating K8s cluster with multiple Linux hosts (due to some reason we can't think about Cloud right now) .
Consider a scenario where we have K8s Cluster spanning over multiple linux hosts (5+).
1) If one of the linux worker node crashes and once we bring it back, does enabling kubelet as part of systemctl in advance will be sufficient to bring up required K8s jobs so that it be detected by master again?
2) I believe once worker node is crashed (X pods), after the pod eviction timeout master will reschedule those X pods into some other healthy node(s). Once the node is UP it won't do any deployment of X pods as master already scheduled to other node but will be ready to accept new requests from Master.
Is this correct ?

Yes, should be the default behavior, check your Cluster deployment tool.
Yes, Kubernetes handles these things automatically for Deployments. For StatefulSets (with local volumes) and DaemonSets things can be node specific and Kubernetes will wait for the node to come back.
Better to create a test environment and see/test the failure scenarios

Related

Expandable single node K8s cluster

I am searching for a solution that enables me to set up a single node K8s cluster and if I needed I add nodes to it later.
I am aware of solutions such as minikube and microk8s but they are not expandable. I am trying k3s at the moment exactly because it is offering this feature but I have some problems with storage and other stuff that I am working on them.
Now my questions:
What other solution for this exists?
What are the disadvantages if I untaint the master node and run everything there (for a long period and not just for test)?
You can use kubeadm to setup a single node "cluster". Then you can use the join command to add more nodes
You can expand k3s cluster via k3sup join.Here is guide.
Key Kubernetes services such as kube-apiserver, kube-scheduler should be available and running smoothly at all times on master nodes. Therefore, it is essential to have dedicated resources for the master nodes, and avoid having other non-critical workloads interfere with the functioning of the master services
What are the disadvantages if I untaint the master node and run everything there (for a long period and not just for test)?
Failure of the worker will of course bring down your applications. When you recover it or spin up another one, K8s will recover your apps for you.
Failure of the master will not adversely affect your systems only the cluster's ability to manage itself and its self-healing capabilities (which will affect uptime at some point).
I am searching for a solution that enables me to set up a single node K8s cluster and if I needed I add nodes to it later.
To the best of my knowledge, there is no such thing as single node production ready k8s cluster.
For something small and simple you can check Rancher.
What other solution for this exists?
kubeadm allows you to install everything on a single node. Install kubeadm on the node, "kubeadm init", install a pod network, then remove the master taint.
Another solution you may be interested in is the Kubespray.
Some "honorable mentions" are:
Charmed Kubernetes by Canonical allows you to do everything on one node; however it should be quite a big node, so may be not the case here (but still worth mentioning).
If you don't really require all the k8s power (with only one small node), then Nomad could be an alternative.
Let me know if that helps.

How does kube-proxy behave when it can't reach the master?

From what I've read about Kubernetes, if the master(s) die, the workers should still be able to function as normal (https://stackoverflow.com/a/39173007/281469), although no new scheduling will occur.
However, I've found this to not be the case when the master can also schedule worker pods. Take a 2-node cluster, where one node is a master and the other a worker, and the master has the taints removed:
If I shut down the master and docker exec into one of the containers on the worker I can see that:
nc -zv ip-of-pod 80
succeeds, but
nc -zv ip-of-service 80
fails half of the time. The Kubernetes version is v1.15.10, using iptables mode for kube-proxy.
I'm guessing that since the kube-proxy on the worker node can't connect to the apiserver, it will not remove the master node from the iptables rules.
Questions:
Is it expected behaviour that kube-proxy won't stop routing to pods on master nodes, or is there something "broken"?
Are any workarounds available for this kind of setup to allow the worker nodes to still function correctly?
I realise the best thing to do is separate the CP nodes but that's not viable for what I'm working on at the moment.
Is it expected behaviour that kube-proxy won't stop routing to pods on
master nodes, or is there something "broken"?
Are any workarounds
available for this kind of setup to allow the worker nodes to still
function correctly?
The cluster master plays the role of decision maker for the various activities in cluster's nodes. This can include scheduling workloads, managing the workloads' lifecycle, scaling etc.. Each node is managed by the master components and contains the services necessary to run pods. The services on a node typically includes the kube-proxy, container runtime and kubelet.
The kube-proxy component enforces network rules on nodes and helps kubernetes in managing the connectivity among Pods and Services. Also, the kube-proxy, acts as an egress-based load-balancing controller which keeps monitoring the the kubernetes API server and continually updates node's iptables subsystem based on it.
In simple terms, the master node only is aware of everything and is in charge of creating the list of routing rules as well based on node addition or deletion etc. kube-proxy plays a kind of enforcer whereby it takes charge of checking with master, syncing the information and enforcing the rules on the list.
If the master node(API server) is down, the cluster will not be able to respond to API commands or deploy nodes. If another master node is not available, there shall be no one else available who can instruct the worker nodes on change in work allocation and hence they shall continue to execute the operations that were earlier scheduled by the master until the time the master node is back and gives different instructions. Inline to it, kube-proxy shall also be unable to get the latest rules by sync up with master, however it shall not stop routing and shall continue to handle the networking and routing functionalities (uses the earlier iptable rules that were determined before the master node went down) that shall allow network communication to your pods provided all pods in worker nodes are still up and running.
Single master node based architecture is not a preferred deployment architecture for production. Considering that resilience and reliability is one of the major business goal of kubernetes, it is recommended as a best practice to have HA cluster based architecture to avoid single point of failure.
Once you remove taints, kubernetes scheduler don't need any tolerations to schedule pods on your master node. So it is as good as your worker node with control plane components running on it and you can also run your workload pods on this node (although its not a recommended practice).
Kube-proxy (https://kubernetes.io/docs/concepts/overview/components/#kube-proxy) is the component deployed on all the nodes of cluster and it handles the networking and routing connection to your pods. So, even if your master node is down kube-proxy still works fine on the worker node and it will route traffic to your pods running on worker node.
If all your pods are running in worker nodes (which are still up and running), then kube-proxy will continue to route traffic to your pods even via service.
There is nothing inherent in Kubernetes that would cause this. The master node role is just for humans, and if you've removed the taints then the nodes are just normal nodes. That said, remember that usual rules about scheduling and resource requests apply so if your pods don't all fit then things wouldn't be scheduled. It's possible your Kubernetes deploy system set up more specialized firewall rules or similar around the control plane nodes, but that would be dependent on that system.

Running Kubernetes master and node on the same server (scheduling pods on Kubernetes master)

If you run taint command on Kubernetes master:
kubectl taint nodes --all node-role.kubernetes.io/master-
it allows you to schedule pods.
So it acts as node and master.
I have tried to run 3 server cluster where all nodes have both roles. I didn't notice any issues from the first look.
Do you think nowadays this solution can be used to run small cluster for production service? If not, what are the real downsides? In which situations this setup fails comparing with standard setup?
Assume that etcd is running on all three servers.
Thank you
The standard reason to run separate master nodes and worker nodes is to keep a busy workload from interfering with the cluster proper.
Say you have three nodes as proposed. One winds up running a database; one runs a Web server; the third runs an asynchronous worker pod. Suddenly you get a bunch of traffic into your system, the Rails application is using 100% CPU, the Sidekiq worker is cranking away at 100% CPU, the MySQL database is trying to handle some complicated joins and is both high CPU and also is using all of the available disk bandwidth. You run kubectl get pods: which node is actually able to service these requests? If your application triggers the Linux out-of-memory killer, can you guarantee that it won't kill etcd or kubelet, both of which are critical to the cluster working?
If this is running in a cloud environment, you can often get away with smaller (cheaper) nodes to be the masters. (Kubernetes on its own doesn't need a huge amount of processing power, but it does need it to be reliably available.)

kubernetes - can we create 2 node master-only cluster with High availability

I am new to the Kubernetes and cluster.
I would like to bring up an High Availability Master Only Kubernetes Cluster(Need Not to!).
I have the 2 Instances/Servers running Kubernetes daemon, and running different kind of pods on both the Nodes.
Now I would like to somehow create the cluster and if the one of the host(2) down, then all the pods from that host(2) should move to the another host(1).
once the host(2) comes up. the pods should float back.
Please let me know if there is any way i can achieve this?
Since your requirement is to have a 2 node master-only cluster and also have HA capabilities then unfortunately there is no straightforward way to achieve it.
Reason being that a 2 node master-only cluster deployed by kubeadm has only 2 etcd pods (one on each node). This gives you no fault tolerance. Meaning if one of the nodes goes down, etcd cluster would lose quorum and the remaining k8s master won't be able to operate.
Now, if you were ok with having an external etcd cluster where you can maintain an odd number of etcd members then yes, you can have a 2 node k8s cluster and still have HA capabilities.
It is possible that master node serves also as a worker node however it is not advisable on production environments, mainly for performance reasons.
By default, kubeadm configures master node so that no workload can be run on it and only regular nodes, added later would be able to handle it. But you can easily override this default behaviour.
In order to enable workload to be scheduled also on master node you need to remove from it the following taint, which is added by default:
kubectl taint nodes --all node-role.kubernetes.io/master-
To install and configure multi-master kubernetes cluster you can follow this tutorial. It describes scenario with 3 master nodes but you can easily customize it to your needs.

Kubernetes Deployment with Zero Down Time

As a leaner of Kubernetes concepts, their working, and deployment with it. I have a couple of cases which I don't know how to achieve. I am looking for advice or some guideline to achieve it.
I am using the Google Cloud Platform. The current running flow is described below. A push to the google source repository triggers Cloud Build which creates a docker image and pushes the image to the running cluster nodes.
Case 1: Now I want that when new pods are up and running. Then traffic is routed to the new pods. Kill old pod but after each pod complete their running request. Zero downtime is what I'm looking to achieve.
Case 2: What will happen if the space of running pod reaches 100 and in the Debian case that the inode count reaches full capacity. Will kubernetes create new pods to manage?
Case 3: How to manage pod to database connection limits?
Like the other answer use Liveness and Readiness probes. Basically, a new pod is added to the service pool then it will only serve traffic after the readiness probe has passed. The old pod is removed from the Service pool, then drained and then terminated. This happens on a rolling fashion one pod at a time.
This really depends on the capacity of your cluster and the ability to schedule pods depending on the limits for the containers in them. For more about setting up limits for containers refer to here. In terms of the inode limit, if you reach it on a node, the kubelet won't be able to run any more pods on that node. The kubelet eviction manager also has a mechanism in where evicts some pods using the most inodes. You can also configure your eviction thresholds on the kubelet.
This would be more a limitation at the OS level combined your stateful application configuration. You can keep this configuration in a ConfigMap. And for example in something for MySql the option would be max_connections.
I can answer case 1 since Ive done it myself.
Use Deployments with readinessProbes & livelinessProbes