Distribute messages on single Kafka topic to specific consumer - apache-kafka

Avro encoded messages on a single Kafka topic, single partitioned. Each of these messages were to be consumed by a specific consumer only. For ex, message a1, a2, b1 and c1 on this topic, there are 3 consumers named A, B and C. Each consumer would get all the messages but ultimate A would consume a1 and a2, B on b1 and C on c1.
I want to know how typically this is solved when using avro on Kafka:
leave it for the consumers to deserialize the message then some application logic to decide to consume the message or drop the message
use partition logic to make each of the messages to go to a particular partition, then setup each consumer to listen to only a single partition
setup another 3 topics and a tiny kafka-stream application that would do the filtering + routing from main topic to these 3 specific topics
make use of kafka header to inject identifier for downstream consumers to filter
Looks like each of the options have their pros and cons. I want to know if there is a convention that people follow or there is some other ways of solving this.

It depends...
If you only have a single partitioned topic, the only option is to let each consumer read all data and filter client side which data the consumer is interested in. For this case, each consumer would need to use a different group.id to isolate the consumers from each other.
Option 2 is certainly possible, if you can control the input topic you are reading from. You might still have different group.ids for each consumer as it seems that the consumer represent different applications that should be isolated from each other. The question is still if this is a good model, because the idea of partitions is to provide horizontal scale out, and data-parallel processing; however, if each application reads only from one partition it seems not to align with this model. You also need to know which data goes into which partition producer side and consumer side to get the mapping right. Hence, it implies a "coordination" between producer and consumer what seems not desirable.
Option 3 seems to indicate that you cannot control the input topic and thus want to branch the data into multiple topics? This seems to be a good approach in general, as topics are a logical categorization of data. However, it would even be better to have 3 topic for the different data to begin with! If you cannot have 3 input topic from the beginning on, Option 3 seems not to provide a good conceptual setup, however, it won't provide much performance benefits, because the Kafka Streams application required to read and write each record once. The saving you gain is that each application would only consume from one topic and thus redundant data read is avoided here -- if you would have, lets say 100 application (and each is only interested in 1/100 of the data) you would be able to cut down the load significantly from an 99x read overhead to a 1x read and 1x write overhead. For your case you don't really cut down much as you go from 2x read overhead to 1x read + 1x write overhead. Additionally, you need to manage the Kafka Streams application itself.
Option 4 seems to be orthogonal, because is seems to answer the question on how the filtering works, and headers can be use for Option 1 and Option 3 to do the actually filtering/branching.

The data in the topic is just bytes, Avro shouldn't matter.
Since you only have one partition, only one consumer of a group can be actively reading the data.
If you only want to process certain offsets, you must either seek to them manually or skip over messages in your poll loop and commit those offsets

Related

How to scale to thousands of producer-consumer pairs in Kafka?

I have a usecase where I want to have thousands of producers writing messages which will be consumed by thousands of corresponding consumers. Each producer's message is meant for exactly one consumer.
Going through the core concepts here and here: it seems like each consumer-producer pair should have its own topic. Is this correct understanding? I also looked into consumer groups but it seems they are more for parallellizing consumption.
Right now I have multiple producer-consumer pairs sharing very few topics, but because of that (i think) I am having to read a lot of messages in the consumer and filter them out for the specific producer's messages by the key. As my system scales this might take a lot of time. Also in the event I have to delete the checkpoint this will be even more problematic as it starts reading from the very beginning.
Is creating thousands of topics the solution for this? Or is there any other way to use concepts like partitions, consumer groups etc? Both producers and consumers are spark streaming/batch applications. Thanks.
Each producer's message is meant for exactly one consumer
Assuming you commit the offsets, and don't allow retries, this is the expected behavior of all Kafka consumers (or rather, consumer groups)
seems like each consumer-producer pair should have its own topic
Not really. As you said, you have many-to-many relationship of clients. You do not need to have a known pair ahead of time; a producer could send data with no expected consumer, then any consumer application(s) in the future should be able to subscribe to that topic for the data they are interested in.
sharing very few topics, but because of that (i think) I am having to read a lot of messages in the consumer and filter them out for the specific producer's messages by the key. As my system scales this might take a lot of time
The consumption would take linearly more time on a higher production rate, yes, and partitions are the way to solve for that. Beyond that, you need faster network and processing. You still need to consume and deserialize in order to filter, so the filter is not the bottleneck here.
Is creating thousands of topics the solution for this?
Ultimately depends on your data, but I'm guessing not.
Is creating thousands of topics the solution for this? Or is there any
other way to use concepts like partitions, consumer groups etc? Both
producers and consumers are spark streaming/batch applications.
What's the reason you want to have thousands of consumers? or want to have a 1 to 1 explicit relationship? As mentioned earlier, only one consumer within a consumer group will process a message. This is normal.
If however you are trying to make your record processing extremely concurrent, instead of using very high partition counts or very large consumer groups, should use something like Parallel Consumer (PC).
By using PC, you can processing all your keys in parallel, regardless of how long it takes to process, and you can be as concurrent as you wish .
PC directly solves for this, by sub partitioning the input partitions by key and processing each key in parallel.
It also tracks per record acknowledgement. Check out Parallel Consumer on GitHub (it's open source BTW, and I'm the author).

Splitting Kafka into separate topic or single topic/multiple partitions

As usual, it's bit confusing to see benefits of splitting methods over others.
I can't see the difference/Pros-Cons between having
Topic1 -> P0 and Topic 2 -> P0
over Topic 1 -> P0, P1
and a consumer pull from 2 topics or single topic/2 partitions, while P0 and P1 will hold different event types or entities.
Thee only benefit I can see if another consumer needs Topic 2 data then it's easy to consume
Regarding topic auto generation, any benefits behind that way or it will be out of hand after some time?
Thanks
I would say this decision depends on multiple factors;
Logic/Separation of Concerns: You can decide whether to use multiple topics over multiple partitions based on the logic you are trying to implement. Normally, you need distinct topics for distinct entities. For example, say you want to stream users and companies. It doesn't make much sense to create a single topic with two partitions where the first partition holds users and the second one holds the companies. Also, having a single topic for multiple partitions won't allow you to implement e.g. message ordering for users that can only be achieved using keyed messages (message with the same key are placed in the same partition).
Host storage capabilities: A partition must fit in the storage of the host machine while a topic can be distributed across the whole Kafka Cluster by partitioning it across multiple partitions. Kafka Docs can shed some more light on this:
The partitions in the log serve several purposes. First, they allow
the log to scale beyond a size that will fit on a single server. Each
individual partition must fit on the servers that host it, but a topic
may have many partitions so it can handle an arbitrary amount of data.
Second they act as the unit of parallelism—more on that in a bit.
Throughput: If you have high throughput, it makes more sense to create different topics per entity and split them into multiple partitions so that multiple consumers can join the consumer group. Don't forget that the level of parallelism in Kafka is defined by the number of partitions (and obviously active consumers).
Retention Policy: Message retention in Kafka works on partition/segment level and you need to make sure that the partitioning you've made in conjunction with the desired retention policy you've picked will support your use case.
Coming to your second question now, I am not sure what is your requirement and how this question relates to the first one. When a producer attempts to write a message to a Kafka topic that does not exist, it will automatically create that topic when auto.create.topics.enable is set to true. Otherwise, the topic won't get created and your producer will fail.
auto.create.topics.enable: Enable auto creation of topic on the server
Again, this decision should be dependent on your requirements and the desired behaviour. Normally, auto.create.topics.enable should be set to false in production environments in order to mitigate any risks.
Just adding some things on top of Giorgos answer:
By choosing the second approach over the first one, you would lose a lot of features that Kafka offers. Some of the features may be: data balancing per brokers, removing topics, consumer groups, ACLs, joins with Kafka Streams, etc.
I think that this flag can be easily compared with automatically creating tables in your database. It's handy to do it in your dev environments but you never want it to happen in production.

kafka topics and partitions decisions

I need to understand something about kafka:
When I have a single kafka broker on a single host - is there any sense to have it have more than one partition for the topics? I means even if my data can be distinguished with some key (say tenant id) - what is the benefit of doing it on a single kafka broker? does this give any parallelism , if so how?
When a key is used, is this means that each key is mapped to a given partition? Does the number of partitions for a topic must be equal to the number of possible values for the key I specified? OR is this just a hash and so the number of partitions doesnt have to be equal?
From what I read, topics are created due to types of messages to be places in kafka. But in my case, i have 2 topics I have created since I have 2 types of consumption: one for reading one by one message. the second in case of a bulk of messages comes into the queue (application reasons) and then it is being entered into the second topic. Is that a good design although the messages type is the same? any other practice for such a scansion?
Yes, it definitely makes sense to have more than one partition for a topic even when you have a single Kafka broker. A scenario when you can benefit from this is pretty simple:
you need to guarantee in-order processing by tenant id
processing logic for each message is rather complex and takes some time. Especially the case when the Kafka message itself is simple, but the logic behind processing this message takes time (simple example - message is an URL, and the processing logic is downloading the file from there and doing some processing)
Given these 2 conditions you may get into a situation where one consumer is not able to keep up processing all the messages if all the data goes to a single partition. Remember, you can process one partition with exactly one consumer (well, you can use 2 consumers if using different consumer groups, but that's not your case), so you'll start getting behind over time. But if you have more than one partition you'll either be able to use one consumer and process data in parallel (this could help to speed things up in some cases) or just add more consumers.
By default, Kafka uses hash-based partitioning. This is configurable by providing a custom Partitioner, for example you can use random partitioning if you don't care what partition your message ends up in.
It's totally up to you what purposes you have topics for
UPD, answers to questions in the comment:
Adding more consumers is usually done for adding more computing power, not for achieving desired parallelism. To add parallelism add partitions. Most consumer implementations process different partitions on different threads, so if you have enough computing power, you might just have a single consumer processing multiple partitions in parallel. Then, if you start bumping into situations where one consumer is not enough, you just add more consumers.
When you create a topic you just specify the number of partitions (and replication factor for this topic, but that's a different thing). The key and partition to send is completely up to producer. In fact, you could configure your producer to use random partitioner and it won't even care about keys, just pick the partition randomly. There's no direct relation between key -> partition, it's just convenient to benefit from having things setup like this.
Can you elaborate on this one? Not sure I understand this, but I guess your question is whether you can send just a value and Kafka will infer a key somehow itself. If so, then the answer is no - Kafka does not apply any transformation to messages and stores them as is, so if you want your message to contain a key, the producer must explicitly send the key.

Apache Kafka order of messages with multiple partitions

As per Apache Kafka documentation, the order of the messages can be achieved within the partition or one partition in a topic. In this case, what is the parallelism benefit we are getting and it is equivalent to traditional MQs, isn't it?
In Kafka the parallelism is equal to the number of partitions for a topic.
For example, assume that your messages are partitioned based on user_id and consider 4 messages having user_ids 1,2,3 and 4. Assume that you have an "users" topic with 4 partitions.
Since partitioning is based on user_id, assume that message having user_id 1 will go to partition 1, message having user_id 2 will go to partition 2 and so on..
Also assume that you have 4 consumers for the topic. Since you have 4 consumers, Kafka will assign each consumer to one partition. So in this case as soon as 4 messages are pushed, they are immediately consumed by the consumers.
If you had 2 consumers for the topic instead of 4, then each consumer will be handling 2 partitions and the consuming throughput will be almost half.
To completely answer your question,
Kafka only provides a total order over messages within a partition, not between different partitions in a topic.
ie, if consumption is very slow in partition 2 and very fast in partition 4, then message with user_id 4 will be consumed before message with user_id 2. This is how Kafka is designed.
I decided to move my comment to a separate answer as I think it makes sense to do so.
While John is 100% right about what he wrote, you may consider rethinking your problem. Do you really need ALL messages to stay in order? Or do you need all messages for specific user_id (or whatever) to stay in order?
If the first, then there's no much you can do, you should use 1 partition and lose all the parallelism ability.
But if the second case, you might consider partitioning your messages by some key and thus all messages for that key will arrive to one partition (they actually might go to another partition if you resize topic, but that's a different case) and thus will guarantee that all messages for that key are in order.
In kafka Messages with the same key, from the same Producer, are delivered to the Consumer in order
another thing on top of that is, Data within a Partition will be stored in the order in which it is written therefore, data read from a Partition will be read in order for that partition
So if you want to get your messages in order across multi partitions, then you really need to group your messages with a key, so that messages with same key goes to same partition and with in that partition the messages are ordered.
In a nutshell, you will need to design a two level solution like above logically to get the messages ordered across multi partition.
You may consider having a field which has the Timestamp/Date at the time of creation of the dataset at the source.
Once, the data is consumed you can load the data into database. The data needs to be sorted at the database level before using the dataset for any usecase. Well, this is an attempt to help you think in multiple ways.
Let's consider we have a message key as the timestamp which is generated at the time of creation of the data and the value is the actual message string.
As and when a message is picked up by the consumer, the message is written into HBase with the RowKey as the kafka key and value as the kafka value.
Since, HBase is a sorted map having timestamp as a key will automatically sorts the data in order. Then you can serve the data from HBase for the downstream apps.
In this way you are not loosing the parallelism of kafka. You also have the privilege of processing sorting and performing multiple processing logics on the data at the database level.
Note: Any distributed message broker does not guarantee overall ordering. If you are insisting for that you may need to rethink using another message broker or you need to have single partition in kafka which is not a good idea. Kafka is all about parallelism by increasing partitions or increasing consumer groups.
Traditional MQ works in a way such that once a message has been processed, it gets removed from the queue. A message queue allows a bunch of subscribers to pull a message, or a batch of messages, from the end of the queue. Queues usually allow for some level of transaction when pulling a message off, to ensure that the desired action was executed, before the message gets removed, but once a message has been processed, it gets removed from the queue.
With Kafka on the other hand, you publish messages/events to topics, and they get persisted. They don’t get removed when consumers receive them. This allows you to replay messages, but more importantly, it allows a multitude of consumers to process logic based on the same messages/events.
You can still scale out to get parallel processing in the same domain, but more importantly, you can add different types of consumers that execute different logic based on the same event. In other words, with Kafka, you can adopt a reactive pub/sub architecture.
ref: https://hackernoon.com/a-super-quick-comparison-between-kafka-and-message-queues-e69742d855a8
Well, this is an old thread, but still relevant, hence decided to share my view.
I think this question is a bit confusing.
If you need strict ordering of messages, then the same strict ordering should be maintained while consuming the messages. There is absolutely no point in ordering message in queue, but not while consuming it. Kafka allows best of both worlds. It allows ordering the message within a partition right from the generation till consumption while allowing parallelism between multiple partition. Hence, if you need
Absolute ordering of all events published on a topic, use single partition. You will not have parallelism, nor do you need (again parallel and strict ordering don't go together).
Go for multiple partition and consumer, use consistent hashing to ensure all messages which need to follow relative order goes to a single partition.

Data Modeling with Kafka? Topics and Partitions

One of the first things I think about when using a new service (such as a non-RDBMS data store or a message queue) is: "How should I structure my data?".
I've read and watched some introductory materials. In particular, take, for example, Kafka: a Distributed Messaging System for Log Processing, which writes:
"a Topic is the container with which messages are associated"
"the smallest unit of parallelism is the partition of a topic. This implies that all messages that ... belong to a particular partition of a topic will be consumed by a consumer in a consumer group."
Knowing this, what would be a good example that illustrates how to use topics and partitions? When should something be a topic? When should something be a partition?
As an example, let's say my (Clojure) data looks like:
{:user-id 101 :viewed "/page1.html" :at #inst "2013-04-12T23:20:50.22Z"}
{:user-id 102 :viewed "/page2.html" :at #inst "2013-04-12T23:20:55.50Z"}
Should the topic be based on user-id? viewed? at? What about the partition?
How do I decide?
When structuring your data for Kafka it really depends on how it´s meant to be consumed.
In my mind, a topic is a grouping of messages of a similar type that will be consumed by the same type of consumer so in the example above, I would just have a single topic and if you´ll decide to push some other kind of data through Kafka, you can add a new topic for that later.
Topics are registered in ZooKeeper which means that you might run into issues if trying to add too many of them, e.g. the case where you have a million users and have decided to create a topic per user.
Partitions on the other hand is a way to parallelize the consumption of the messages. The total number of partitions in a broker cluster need to be at least the same as the number of consumers in a consumer group to make sense of the partitioning feature. Consumers in a consumer group will split the burden of processing the topic between themselves according to the partitioning so that one consumer will only be concerned with messages in the partition itself is "assigned to".
Partitioning can either be explicitly set using a partition key on the producer side or if not provided, a random partition will be selected for every message.
Once you know how to partition your event stream, the topic name will be easy, so let's answer that question first.
#Ludd is correct - the partition structure you choose will depend largely on how you want to process the event stream. Ideally you want a partition key which means that your event processing is partition-local.
For example:
If you care about users' average time-on-site, then you should partition by :user-id. That way, all the events related to a single user's site activity will be available within the same partition. This means that a stream processing engine such as Apache Samza can calculate average time-on-site for a given user just by looking at the events in a single partition. This avoids having to perform any kind of costly partition-global processing
If you care about the most popular pages on your website, you should partition by the :viewed page. Again, Samza will be able to keep a count of a given page's views just by looking at the events in a single partition
Generally, we are trying to avoid having to rely on global state (such as keeping counts in a remote database like DynamoDB or Cassandra), and instead be able to work using partition-local state. This is because local state is a fundamental primitive in stream processing.
If you need both of the above use-cases, then a common pattern with Kafka is to first partition by say :user-id, and then to re-partition by :viewed ready for the next phase of processing.
On topic names - an obvious one here would be events or user-events. To be more specific you could go with with events-by-user-id and/or events-by-viewed.
This is not exactly related to the question, but in case you already have decided upon the logical segregation of records based on topics, and want to optimize the topic/partition count in Kafka, this blog post might come handy.
Key takeaways in a nutshell:
In general, the more partitions there are in a Kafka cluster, the higher the throughput one can achieve. Let the max throughout achievable on a single partition for production be p and consumption be c. Let’s say your target throughput is t. Then you need to have at least max(t/p, t/c) partitions.
Currently, in Kafka, each broker opens a file handle of both the index and the data file of every log segment. So, the more partitions, the higher that one needs to configure the open file handle limit in the underlying operating system. E.g. in our production system, we once saw an error saying too many files are open, while we had around 3600 topic partitions.
When a broker is shut down uncleanly (e.g., kill -9), the observed unavailability could be proportional to the number of partitions.
The end-to-end latency in Kafka is defined by the time from when a message is published by the producer to when the message is read by the consumer. As a rule of thumb, if you care about latency, it’s probably a good idea to limit the number of partitions per broker to 100 x b x r, where b is the number of brokers in a Kafka cluster and r is the replication factor.
I think topic name is a conclusion of a kind of messages, and producer publish message to the topic and consumer subscribe message through subscribe topic.
A topic could have many partitions. partition is good for parallelism. partition is also the unit of replication,so in Kafka, leader and follower is also said at the level of partition. Actually a partition is an ordered queue which the order is the message arrived order. And the topic is composed by one or more queue in a simple word. This is useful for us to model our structure.
Kafka is developed by LinkedIn for log aggregation and delivery. this scene is very good as a example.
The user's events on your web or app can be logged by your Web sever and then sent to Kafka broker through the producer. In producer, you could specific the partition method, for example : event type (different event is saved in different partition) or event time (partition a day into different period according your app logic) or user type or just no logic and balance all logs into many partitions.
About your case in question, you can create one topic called "page-view-event", and create N partitions through hash keys to distribute the logs into all partitions evenly. Or you could choose a partition logic to make log distributing by your spirit.