AWS Redshift - Extract tables watermark - amazon-redshift

How is possible to get table watermarks on AWS Redshift? I've searched in internet but I didn't find any command to extract it.

There is no concept of table watermarks for AWS Redshift.

Related

CDC Migration from AWS RDS to AWS Redshift

How to migrate my whole database which is currently in AWS RDS Postgres to AWS Redshift and also can you please help me out how can I keep both these DBs in sync. I want to sync even if any column is updated in RDS so it must get updated in Redshift also.
I know we can achieve it with AWS Glue, but the above scenario is mandatory in my case. Migration task is easy to do but to to the CDC migration is bit challenging. I am also aware about the bookmark key but my situation is bit different, I do not have any sequential column in the tables, but it has updated_at field in all the tables so this column is the only field on which I can check whether the record is processed or not so that duplicate processing may not occur and if any new data is inserted it should also get replicated in RedShift.
So, would anyone help me out to do this even by using pyspark script?
Thanks.

How to use Glue to remove ''(single quote) in Redshift?

When I upload table from S3 to AWS redshift by using Glue, the table that shows on Redshift including single quote('') in the table.
I think it is the white space in the original table. Please help me to solve this problem. Thank you very much.

Move data from PostgreSQL to AWS S3 and analyze with RedShift Spectrum

I have a big amount of PostgreSQL tables with different schemas and the massive amount of data inside them.
I'm unable to do the data analytics right now because the data amount is quite large - a few TB of data and PostgreSQL is not able to process queries in a reasonable amount of time.
I'm thinking about the following approach - I'll process all of my PostgreSQL tables with Apache Spark, load the DataFrames and store them as the Parquet files in AWS S3. Then I'll use RedShift Spectrum in order to query the information stored inside of these PARQUET files.
First of all, I'd like to ask - will this solution work at all?
And the second - will RedShift Spectrum be able to automatically create EXTERNAL tables from these Parquet files without additional schema specification(even when the original PostgreSQL tables contain the unsupported data types by AWS RedShift)?
Redshift Spectrum pretty much supports same datatypes as Redshift itself.
Redshift Spectrum creates cluster of compute nodes behind the scenes. The size of cluster is based on number of actual Redshift Cluster nodes, so if you plan to create 1 node Redshift cluster, Spectrum will run pretty slow.
As you noted in comments, you can use Athena to query the data, and it will be better option in your case instead of Spectrum. But Athena has several limitations, like 30 min run time, memory consumption etc. So if you plan to do complicated queries with several joins, it can just not work.
Redshift Spectrum can't create external tables without provided structure.
Best solution in your case will be to use Spark (on EMR, or Glue) to transform the data, Athena to query it, and if Athena can't do specific query - use SparkSQL on same data. You can use Glue, but running jobs on EMR on Spot Instances will be more flexible and cheaper. EMR clusters comes with EMRFS, which gives you the ability to use S3 almost transparently instead of HDFS.
AWS Glue might be interesting as an option for you. It is both a hosted version of Spark, with some AWS specific addons and a Data Crawler + Data Catalogue.
It can crawl unstructured data such as Parquet files and figure out the structure. Which then allows you to export it to AWS RedShift in structured form if needed.
See this blog post on how to connect it to a postgres database using JDBC to move data from Postgres to S3.

PySpark save to Redshift table with "Overwirte" mode results in dropping table?

Using PySpark in AWS Glue to load data from S3 files to Redshift table, in code used mode("Overwirte") got error stated that "can't drop table because other object depend on the table", turned out there is view created on top of that table, seams the "Overwrite" mode actually drop and re-create redshift table then load data, is there any option that only "truncate" table not dropping it?
AWS Glue uses databricks spark redshift connector (it's not documented anywhere but I verified that empirically). Spark redshift connector's documentation mentions:
Overwriting an existing table: By default, this library uses transactions to perform overwrites, which are implemented by deleting the destination table, creating a new empty table, and appending rows to it.
Here there is a related discussion inline to your question, where they have used truncate instead of overwrite, also its a combination of lambda & glue. Please refer here for detailed discussions and code samples. Hope this helps.
regards

Redshift insert bottleneck

I am trying to migrate a huge table from postgres into Redshift.
The size of the table is about 5,697,213,832
tool: pentaho Kettle Table input(from postgres) -> Table output(Redshift)
Connecting with Redshift JDBC4
By observation I found the inserting into Redshift is the bottleneck. only about 500 rows/second.
Is there any ways to accelerate the insertion into Redshift in single machine mode ? like using JDBC parameter?
Have you consider using S3 as mid-layer?
Dump your data to csv files and apply gzip compression. Upload files to the S3 and then use copy command to load the data.
http://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html
The main reason for bottleneck of redshift performance, which i considered is that Redshift treats each and every hit to the cluster as one single query. It executes each query on its cluster and then proceeds to the next stage. Now when i am sending across multiple rows (in this case 10), each row of data is treated a separate query. Redshift executes each query one by one and loading of the data is completed once all the queries are executed. It means if you are having 100 million rows, there would be 100 million queries running on your Redshift cluster. Well the performance goes to dump !!!
Using S3 File Output step in PDI will load your data to S3 Bucket and then apply the COPY command on the redshift cluster to read the same data from S3 to Redshift. This will solve your problem of performance.
You may also read the below blog links :
Loading data to AWS S3 using PDI
Reading Data from S3 to Redshift
Hope this helps :)
Better to export data to S3, then use COPY command to import data into Redshift. In this way, the import process is fast while you don't need to vacuum it.
Export your data to S3 bucket and use the COPY command in Redshift . COPY command is the fastest way to insert data in Redshift .