CDC Migration from AWS RDS to AWS Redshift - postgresql

How to migrate my whole database which is currently in AWS RDS Postgres to AWS Redshift and also can you please help me out how can I keep both these DBs in sync. I want to sync even if any column is updated in RDS so it must get updated in Redshift also.
I know we can achieve it with AWS Glue, but the above scenario is mandatory in my case. Migration task is easy to do but to to the CDC migration is bit challenging. I am also aware about the bookmark key but my situation is bit different, I do not have any sequential column in the tables, but it has updated_at field in all the tables so this column is the only field on which I can check whether the record is processed or not so that duplicate processing may not occur and if any new data is inserted it should also get replicated in RedShift.
So, would anyone help me out to do this even by using pyspark script?
Thanks.

Related

AWS - DMS migration missing sequence , views , routines ... etc

I a trying to do the migration for our Postgres database to Aurora postgres
first I create a normal task it migrates all tables only except its constraints.
My tries to clone our database
I downloaded AWS SCT (Schema Conversion Tool) then set my configuration to generate a migration report, here is the report
We completed the analysis of your PostgreSQL source database and
estimate that 100% of the database storage objects and 99.1% of
database code objects can be converted automatically or with minimal
changes if you select Amazon Aurora (PostgreSQL compatible) as your
migration target. Database storage objects include schemas, tables,
table constraints, indexes, types, sequences and foreign tables.
Database code objects include triggers, views, materialized views,
functions, domains, rules, operators, collations, fts configurations,
fts dictionaries and aggregates. Based on the source code syntax
analysis, we estimate 99.9% (based on # lines of code) of your code
can be converted to Amazon Aurora (PostgreSQL compatible)
automatically. To complete the migration, we recommend 133 conversion
action(s) ranging from simple tasks to medium-complexity actions to
complex conversion actions.
my question:
1- is there a way to automate including everything in my source database
2- the report mentions we recommend 133 conversion action(s) where I can find these conversion actions.
3- is it safe to ongoing migration as in my case we need to run migration every day.
Sequence, Index, and Constraint are not migrated and it is mentioned in the official docs on AWS.
You can use this source.
This will help you to migrate Sequence, Index, and Constraint at once.
p.s: this doesn't include View and Routine.
There's no way AFAIK in AWS to automate everything if that was there then it would have been already added in SCT. however, if there are similar errors that are occurring in code/DDL/function like some datatype conversions. you can create a script that will take schema dump and convert all these data types to the desired ones.
Choose the SQL Conversion Actions tab in SCT tool.
The SQL Conversion Actions tab contains a list of SQL code items that can't be converted automatically. There are also recommendations for how to manually convert the SQL code. You can look into the errors and make changes accordingly.
In case if you are migrating to the same version of PG in aurora you can take a schema only dump and restore it into target aurora and later setup a full load/ongoing replication with DMS and you don't have to take SCT into consideration(most of the time worked for me). Just make sure you adhere to aurora limitations specific to the PG version
We have been using ongoing migration in our project at it's working great. There are some best practices we have developed but that will differ from project to project
DDL changes must be made on the target first and stop replication while doing it and resume once done
Separate the tables with high transactions as different DMS task as it will help you in troubleshooting and your rest of the tables can still be working
Always keep in mind DMS replicates data, not the view/function/procedures
Active monitoring of tasks and replication instances
And I would like to suggest if you are performing homogenous migration(PG -> PG) you should consider pg_dump & pg_restore that easy and sophisticated for the same versions and AWS aurora supports it.

Accessing Aurora Postgres Materialized Views from Glue data catalog for Glue Jobs

I have an Aurora Serverless instance which has data loaded across 3 tables (mixture of standard and jsonb data types). We currently use traditional views where some of the deeply nested elements are surfaced along with other columns for aggregations and such.
We have two materialized views that we'd like to send to Redshift. Both the Aurora Postgres and Redshift are in Glue Catalog and while I can see Postgres views as a selectable table, the crawler does not pick up the materialized views.
Currently exploring two options to get the data to redshift.
Output to parquet and use copy to load
Point the Materialized view to jdbc sink specifying redshift.
Wanted recommendations on what might be most efficient approach if anyone has done a similar use case.
Questions:
In option 1, would I be able to handle incremental loads?
Is bookmarking supported for JDBC (Aurora Postgres) to JDBC (Redshift) transactions even if through Glue?
Is there a better way (other than the options I am considering) to move the data from Aurora Postgres Serverless (10.14) to Redshift.
Thanks in advance for any guidance provided.
Went with option 2. The Redshift Copy/Load process writes csv with manifest to S3 in any case so duplicating that is pointless.
Regarding the Questions:
N/A
Job Bookmarking does work. There is some gotchas though - ensure Connections both to RDS and Redshift are present in Glue Pyspark job, IAM self ref rules are in place and to identify a row that is unique [I chose the primary key of underlying table as an additional column in my materialized view] to use as the bookmark.
Using the primary key of core table may buy efficiencies in pruning materialized views during maintenance cycles. Just retrieve latest bookmark from cli using aws glue get-job-bookmark --job-name yourjobname and then just that in the where clause of the mv as where id >= idinbookmark
conn = glueContext.extract_jdbc_conf("yourGlueCatalogdBConnection")
connection_options_source = { "url": conn['url'] + "/yourdB", "dbtable": "table in dB", "user": conn['user'], "password": conn['password'], "jobBookmarkKeys":["unique identifier from source table"], "jobBookmarkKeysSortOrder":"asc"}
datasource0 = glueContext.create_dynamic_frame.from_options(connection_type="postgresql", connection_options=connection_options_source, transformation_ctx="datasource0")
That's all, folks

Source of data in Redshift tables

I am looking to find the data source of couple of Tables in Redshift. I have gone through all the stored procedures in Redshift instance. I couldn't find any stored procedure which populates these tables in Redshift. I have also checked the Data Migration Service and didn't see these tables are being migrated from RDS instance. However, the tables are updated regularly each day.
What would be the way to find how data is populated in those 2 tables? Is there any logs or system tables I can look in to?
One place I'd look is svl_statementtext. That will pull any queries and utility queries that may be inserting or running copy jobs against that table. Just use a WHERE text LIKE %yourtablenamehere% and see what comes back.
https://docs.aws.amazon.com/redshift/latest/dg/r_SVL_STATEMENTTEXT.html
Also check scheduled queries in the Redshift UI console.

Data Migration from one DB to another

I have to create an app which transfer data from snowflake to postgres everyday. Some tables in postgres are truncated before migration and all data from corresponding snowflake table is copied. While for other tables, data after last timestamp in postgres is copied from snowflake.
This job has to run at night sometime and not when customers are using the service at daytime.
What is the best way to do this ?
Do you have constraints, limiting your choices in:
ETL or bulk data tooling
Development languages?
According to this site, you can create a foreign data wrapper on Postgresql for snowflake

Slow insert and update commands during mysql to redshift replication

I am trying to make a replication server from MySQL to redshift, for this, I am parsing the MySQL binlog. For initial replication, I am taking the dump of the mysql table, converting it into a CSV file and uploading the same to S3 and then I use the redshift copy command. For this the performance is efficient.
After the initial replication, for the continuous sync when I am reading the binlog the inserts and updates have to be run sequentially which are very slow.
Is there anything that can be done for increasing the performance?
One possible solution that I can think of is to wrap the statements in a transaction and then send the transaction at once, to avoid multiple network calls. But that would not address the problem that single update and insert statements in redshift run very slow. A single update statement is taking 6s. Knowing the limitations of redshift (That it is a columnar database and single row insertion will be slow) what can be done to work around those limitations?
Edit 1:
Regarding DMS: I want to use redshift as a warehousing solution which just replicates our MYSQL continuously, I don't want to denormalise the data since I have 170+ tables in mysql. During ongoing replication, DMS shows many errors multiple times in a day and fails completely after a day or two and it's very hard to decipher DMS error logs. Also, When I drop and reload tables, it deletes the existing tables on redshift and creates and new table and then starts inserting data which causes downtime in my case. What I wanted was to create a new table and then switch the old one with new one and delete old table
Here is what you need to do to get DMS to work
1) create and run a dms task with "migrate and ongoing replication" and "Drop tables on target"
2) this will probably fail, do not worry. "stop" the dms task.
3) on redshift make the following changes to the table
Change all dates and timestamps to varchar (because the options used
by dms for redshift copy cannot cope with '00:00:00 00:00' dates that
you get in mysql)
change all bool to be varchar - due to a bug in dms.
4) on dms - modify the task to "Truncate" in "Target table preparation mode"
5) restart the dms task - full reload
now - the initial copy and ongoing binlog replication should work.
Make sure you are on latest replication instance software version
Make sure you have followed the instructions here exactly
http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.MySQL.html
If your source is aurora, also make sure you have set binlog_checksum to "none" (bad documentation)