cplex from MATLAB using parfor - matlab

I have a fairly large scale optimization problem although the problem itself is fairly simple. It is just quadratic + linear objective, with linear constraints. So the problem is solvable with cplexqp. The scale of the problem is around 1300 variables, but I need to solve ~200 independent problems.
If I just loop over 200 times and call cplexqp as usual, it takes about 16 minutes to solve all the problems. I considered using parallel computing, so I changed the loop to parfor, and it now takes around 14 minutes. I would have thought we would get much bigger speedup factor, considering that we have 12 cores and 12 workers.
I made sure that the parallel worker is already initialized (so MATLAB does not have to spend time initializing them). I also verified that all 12 worker threads were active in task manager, and they all were using non trivial amount of CPU each.
My question is: do you think cplexqp has a locking mechanism, as in it can't be called with more than one problem at a given time (from different threads?) What if I have different MATLAB processes? (For example I can save the inputs to a file, and start up several MATLAB sessions to consume the file and each session would know which index of problems to solve).
16 minutes is not bad, but we may need to do this several times a day (with potentially different inputs), so I was wondering if we can speed up the process even more.
TIA

The problem is that by default CPLEX will use all cores on your machine to solve one problem. So if you attempt to solve multiple problems in parallel then you are heavily oversubscribing the CPUs. This is likely to result in an overall slowdown.
So you should carefully select how many models you solve in parallel and how many cores you allow for each solve. If you use parfor then you should use the Cplex.Param.threads parameter to limit he number of cores for a single solve, or alternatively, select the simplex algorithm to solve your QPs.
Whether this whole parallelization gives you an overall speedup depends on how much slowdown you will observe for the individual models by limiting the thread counts.

Related

Parfor limitations [duplicate]

the code I'm dealing with has loops like the following:
bistar = zeros(numdims,numcases);
parfor hh=1:nt
bistar = bistar + A(:,:,hh)*data(:,:,hh+1)' ;
end
for small nt (10).
After timing it, it is actually 100 times slower than using the regular loop!!! I know that parfor can do parallel sums, so I'm not sure why this isn't working.
I run
matlabpool
with the out-of-the-box configurations before running my code.
I'm relatively new to matlab, and just started to use the parallel features, so please don't assume that I'm am not doing something stupid.
Thanks!
PS: I'm running the code on a quad core so I would expect to see some improvements.
Making the partitioning and grouping the results (overhead in dividing the work and gathering results from the several threads/cores) is high for small values of nt. This is normal, you would not partition data for easy tasks that can be performed quickly in a simple loop.
Always perform something challenging inside the loop that is worth the partitioning overhead. Here is a nice introduction to parallel programming.
The threads come from a thread pool so the overhead of creating the threads should not be there. But in order to create the partial results n matrices from the bistar size must be created, all the partial results computed and then all these partial results have to be added (recombining). In a straight loop, this is with a high probability done in-place, no allocations take place.
The complete statement in the help (thanks for your link hereunder) is:
If the time to compute f, g, and h is
large, parfor will be significantly
faster than the corresponding for
statement, even if n is relatively
small.
So you see they mean exactly the same as what I mean, the overhead for small n values is only worth the effort if what you do in the loop is complex/time consuming enough.
Parforcomes with a bit of overhead. Thus, if nt is really small, and if the computation in the loop is done very quickly (like an addition), the parfor solution is slower. Furthermore, if you run parforon a quad-core, speed gain will be close to linear for 1-3 cores, but less if you use 4 cores, since the last core also needs to run system processes.
For example, if parfor comes with 100ms of overhead, and the computation in the loop takes 5ms, and if we assume that speed gain is linear up to 4 cores with a coefficient of 1 (i.e. using 4 cores makes the computation 4 times faster), nt needs to be about 30 for you to achieve a speed gain with parfor (150ms with for, 132ms with parfor). If you were to run only 10 iterations, parfor would be slower (50ms with for, 112ms with parfor).
You can calculate the overhead on your machine by comparing execution time with 1 worker vs 0 workers, and you can estimate speed gain by making a liner fit through the execution times with 1 to 4 workers. Then you'll know when it's useful to use parfor.
Besides the bad performance because of the communication overhead (see other answers), there is another reason not to use parfor in this case. Everything which is done within the parfor in this case uses built-in multithreading. Assuming all workers are running on the same PC there is no advantage because a single call already uses all cores of your processor.

Matlab parfor execution speed [duplicate]

the code I'm dealing with has loops like the following:
bistar = zeros(numdims,numcases);
parfor hh=1:nt
bistar = bistar + A(:,:,hh)*data(:,:,hh+1)' ;
end
for small nt (10).
After timing it, it is actually 100 times slower than using the regular loop!!! I know that parfor can do parallel sums, so I'm not sure why this isn't working.
I run
matlabpool
with the out-of-the-box configurations before running my code.
I'm relatively new to matlab, and just started to use the parallel features, so please don't assume that I'm am not doing something stupid.
Thanks!
PS: I'm running the code on a quad core so I would expect to see some improvements.
Making the partitioning and grouping the results (overhead in dividing the work and gathering results from the several threads/cores) is high for small values of nt. This is normal, you would not partition data for easy tasks that can be performed quickly in a simple loop.
Always perform something challenging inside the loop that is worth the partitioning overhead. Here is a nice introduction to parallel programming.
The threads come from a thread pool so the overhead of creating the threads should not be there. But in order to create the partial results n matrices from the bistar size must be created, all the partial results computed and then all these partial results have to be added (recombining). In a straight loop, this is with a high probability done in-place, no allocations take place.
The complete statement in the help (thanks for your link hereunder) is:
If the time to compute f, g, and h is
large, parfor will be significantly
faster than the corresponding for
statement, even if n is relatively
small.
So you see they mean exactly the same as what I mean, the overhead for small n values is only worth the effort if what you do in the loop is complex/time consuming enough.
Parforcomes with a bit of overhead. Thus, if nt is really small, and if the computation in the loop is done very quickly (like an addition), the parfor solution is slower. Furthermore, if you run parforon a quad-core, speed gain will be close to linear for 1-3 cores, but less if you use 4 cores, since the last core also needs to run system processes.
For example, if parfor comes with 100ms of overhead, and the computation in the loop takes 5ms, and if we assume that speed gain is linear up to 4 cores with a coefficient of 1 (i.e. using 4 cores makes the computation 4 times faster), nt needs to be about 30 for you to achieve a speed gain with parfor (150ms with for, 132ms with parfor). If you were to run only 10 iterations, parfor would be slower (50ms with for, 112ms with parfor).
You can calculate the overhead on your machine by comparing execution time with 1 worker vs 0 workers, and you can estimate speed gain by making a liner fit through the execution times with 1 to 4 workers. Then you'll know when it's useful to use parfor.
Besides the bad performance because of the communication overhead (see other answers), there is another reason not to use parfor in this case. Everything which is done within the parfor in this case uses built-in multithreading. Assuming all workers are running on the same PC there is no advantage because a single call already uses all cores of your processor.

parfor not giving speed ups [duplicate]

the code I'm dealing with has loops like the following:
bistar = zeros(numdims,numcases);
parfor hh=1:nt
bistar = bistar + A(:,:,hh)*data(:,:,hh+1)' ;
end
for small nt (10).
After timing it, it is actually 100 times slower than using the regular loop!!! I know that parfor can do parallel sums, so I'm not sure why this isn't working.
I run
matlabpool
with the out-of-the-box configurations before running my code.
I'm relatively new to matlab, and just started to use the parallel features, so please don't assume that I'm am not doing something stupid.
Thanks!
PS: I'm running the code on a quad core so I would expect to see some improvements.
Making the partitioning and grouping the results (overhead in dividing the work and gathering results from the several threads/cores) is high for small values of nt. This is normal, you would not partition data for easy tasks that can be performed quickly in a simple loop.
Always perform something challenging inside the loop that is worth the partitioning overhead. Here is a nice introduction to parallel programming.
The threads come from a thread pool so the overhead of creating the threads should not be there. But in order to create the partial results n matrices from the bistar size must be created, all the partial results computed and then all these partial results have to be added (recombining). In a straight loop, this is with a high probability done in-place, no allocations take place.
The complete statement in the help (thanks for your link hereunder) is:
If the time to compute f, g, and h is
large, parfor will be significantly
faster than the corresponding for
statement, even if n is relatively
small.
So you see they mean exactly the same as what I mean, the overhead for small n values is only worth the effort if what you do in the loop is complex/time consuming enough.
Parforcomes with a bit of overhead. Thus, if nt is really small, and if the computation in the loop is done very quickly (like an addition), the parfor solution is slower. Furthermore, if you run parforon a quad-core, speed gain will be close to linear for 1-3 cores, but less if you use 4 cores, since the last core also needs to run system processes.
For example, if parfor comes with 100ms of overhead, and the computation in the loop takes 5ms, and if we assume that speed gain is linear up to 4 cores with a coefficient of 1 (i.e. using 4 cores makes the computation 4 times faster), nt needs to be about 30 for you to achieve a speed gain with parfor (150ms with for, 132ms with parfor). If you were to run only 10 iterations, parfor would be slower (50ms with for, 112ms with parfor).
You can calculate the overhead on your machine by comparing execution time with 1 worker vs 0 workers, and you can estimate speed gain by making a liner fit through the execution times with 1 to 4 workers. Then you'll know when it's useful to use parfor.
Besides the bad performance because of the communication overhead (see other answers), there is another reason not to use parfor in this case. Everything which is done within the parfor in this case uses built-in multithreading. Assuming all workers are running on the same PC there is no advantage because a single call already uses all cores of your processor.

How to fully use the CPU in Matlab [Improving performance of a repetitive, time-consuming program]

I'm working on an adaptive and Fully automatic segmentation algorithm under varying light condition , the core of this algorithm uses Particle swarm Optimization(PSO) to tune the fuzzy system and believe me it's very time consuming :| for only 5 particles and 100 iterations I have to wait 2 to 3 hours ! and it's just processing one image from my data set containing over 100 photos !
I'm using matlab R2013 ,with a intel coer i7-2670Qm # 2.2GHz //8.00GB RAM//64-bit operating system
the problem is : when starting the program it uses only 12%-16% of my CPU and only one core is working !!
I've searched a lot and came into matlabpool so I added this line to my code :
matlabpool open 8
now when I start the program the task manger shows 98% CPU usage, but it's just for a few seconds ! after that it came back to 12-13% CPU usage :|
Do you have any idea how can I get this code run faster ?!
12 Percent sounds like Matlab is using only one Thread/Core and this one with with full load, which is normal.
matlabpool open 8 is not enough, this simply opens workers. You have to use commands like parfor, to assign work to them.
Further to Daniel's suggestion, ideally to apply PARFOR you'd find a time-consuming FOR loop in you algorithm where the iterations are independent and convert that to PARFOR. Generally, PARFOR works best when applied at the outermost level possible. It's also definitely worth using the MATLAB profiler to help you optimise your serial code before you start adding parallelism.
With my own simulations I find that I cannot recode them using Parfor, the for loops I have are too intertwined to take advantage of multiple cores.
HOWEVER:
You can open a second (and third, and fourth etc) instance of Matlab and tell this additional instance to run another job. Each instance of matlab open will use a different core. So if you have a quadcore, you can have 4 instances open and get 100% efficiency by running code in all 4.
So, I gained efficiency by having multiple instances of matlab open at the same time and running a job. My jobs took 8 to 27 hours at a time, and as one might imagine without liquid cooling I burnt out my cpu fan and had to replace it.
Also do look into optimizing your matlab code, I recently optimized my code and now it runs 40% faster.

Is Scala doing anything in parallel on its own?

I have little program creating a maze. It uses lots of collections (the default variant, which is immutable, or at least used as an immutable).
The program calculates 30 mazes with increasing dimensions. Using a for comprehension over (1 to 30)
Since with the latest versions the parallel collections framework became available I thought to give it a spin, hoping for some performance gain.
This failed and when I investigated a little, I found the following:
When run without any call to anything remotely parallel it still showed a processor load of about 30% on each of the 4 cores of my machine.
When I replaced the Range 1 to 30 with (1 to 30).par CPU load went up to about 80% on all cores (which I expected). The order in which the mazes completed became more or less random (which I expected). The total time for all mazes stayed the same.
Replacing some of the internally used collections with their parallel counter parts did seem to have an effect.
I now have 2 questions:
Why do I have all 4 cores spinning, although there isn't anything that runs in parallel.
What might be likely reasons for the program to still take the same time, no matter if running in parallel or not. There are no obvious other bottlenecks but CPU cycles (no IO, no Network, plenty of Memory via -Xmx setting)
Any ideas on this?
The 30% per core version is just a poor scheduler (sounds like Windows 7) migrating the process from core to core very frequently. It's probably closer to 25% per core (1/4) for your process plus misc other load making 30%. If you run the same example under Linux you would probably see one core pegged.
When you converted to (1 to 30).par, you started really using threads across all cores but the synchronization overhead of distributing such a small amount of work and then collecting the results cancelled out the parallelism gains. You need to break your work into larger independent chunks.
EDIT: If each of 1..30 represents some larger amount of work (solving a maze, say) then automatic parallelization will work much better if each unit of work is about the same. Imagine you had 29 easy mazes and one very very hard maze. The 30th maze will still run serially (or very nearly) with everything else). If your mazes increase in complexity by number try spawning them in the order 30 to 1 by -1 so that the biggest tasks will go first. Think of it as a braindead solution to the knapsack problem.