Solving a simple system of differential equations - matlab

How would I numerically solve for the following simple system of differential equations using Octave?
Note:
I use the qualifier "simple" as, from my understanding, the system is
first order and is not coupled.
I have tried every
method and script online to try solve this including here,
here and here. In all options, I either get a hanging,
non-responsive Octave, a prompt stating "repeated convergence
failures", an error with recommendation that I manually adjust
the initial and maximum step size (which I did try and do, to no
avail), or something that initially seems like a solution on account of no errors but plotting the solution shows a blank graph
Where Octave provided for equivalent Matlab routines, I tried the various routines ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb, ode15i and of course, Octaves own lsode command, all giving the same errors described above.

Let's first replicate the vanilla solution
% z = [x,y]
f = #(t,z) [ z(1).^2+t; z(1).*z(2)-2 ];
z0 = [ 2; 1];
[ T, Z ] = ode45(f, [0, 10], z0);
plot(T,Z); legend(["x";"y"]);
The integrator fails as reported with the warning
warning: Solving was not successful. The iterative integration loop exited at time t = 0.494898 before the endpoint at tend = 10.000000 was reached. This may happen if the stepsize becomes too small. Try to reduce the value of 'InitialStep' and/or 'MaxStep' with the command 'odeset'.
Repeating the integration up to shortly before the critical time
opt = odeset('MaxStep',0.01);
[ T, Z ] = ode45(f, [0, 0.49], z0, opt);
clf; plot(T,Z); legend(["x";"y"]);
results in the graph
where one can see that the quadratic term in the first equation leads to run-away growth. For some reason the solver does only recognize the ever reducing step size, but not the run-away values of the solution.
Indeed the first is a Riccati equation which are known to have poles at finite times. Using the typical parametrization x(t)=-u'(t)/u(t) has by the product/quotient rule the derivative
x' = -u''(t)/u(t) - u'(t)* (-u'(t)/u(t)^2) = -u''(t)/u(t) + x(t)^2
which then results in the ODE for u
u''(t)+t*u(t)=0, u(0)=-1, u'(0)=x(0)=2,
which is an Airy equation with the oscillating branch for t>0. The first root of u is a pole for x, there is no way to extend the solution beyond this point.
g=#(t,u) [u(2); -t.*u(1)]
u0 = [ 1; -2];
function [val,term, dir] = event(t,u)
val = u(1);
term = 0;
dir = 0;
end
opt = odeset('MaxStep',0.1, 'Events', #(t,u) event(t,u));
[T,U,Te,Ue,Ie] = ode45(g,[0,4],u0,opt);
disp(Te)
clf; plot(T,U); legend(["u";"u'"]);
which lists the zeros of u as 0.4949319379979706, 2.886092605590324, again confirming the reason for the warning, and gives the plot

Related

Strange wrong result for (un)coupled PDEs using MATLAB's pdepe, time is doubled

I am trying to solve two coupled reaction diffusion equations in 1d, using pdpe, namely
$\partial_t u_1 = \nabla^2 u_1 + 2k(-u_1^2+u_2)$
$\partial_t u_2 = \nabla^2 u_1 + k(u_1^2-u_2)$
The solution is in the domain $x\in[0,1]$, with initial conditions being two identical Gaussian profiles centered at $x=1/2$. The boundary conditions are absorbing for both components, i.e. $u_1(0)=u_2(0)=u_1(1)=u_2(1)=0$.
Pdepe gives me a solution without prompting any errors. However, I think the solutions must be wrong, because when I set the coupling to zero, i.e. $k=0$ (and also if I set it to be very small, say $k=0.001$), the solutions do not coincide with the solution of the simple diffusion equation
$\partial_t u = \nabla^2 u$
as obtained from pdepe itself.
Strangely enough, the solutions $u_1(t)=u_2(t)$ from the "coupled" case with coupling set to zero, and the solution for the case uncoupled by construction $u(t')$ coincide if we set $t'=2t$, that is, the solution of the "coupled" case evolves twice as fast as the solution of the uncoupled case.
Here's a minimal working example:
Coupled case
function [xmesh,tspan,sol] = coupled(k) %argument is the coupling k
std=0.001; %width of initial gaussian
center=1/2; %center of gaussian
xmesh=linspace(0,1,10000);
tspan=linspace(0,1,1000);
sol = pdepe(0,#pdefun,#icfun,#bcfun,xmesh,tspan);
function [c,f,s] = pdefun(x,t,u,dudx)
c=ones(2,1);
f=zeros(2,1);
f(1) = dudx(1);
f(2) = dudx(2);
s=zeros(2,1);
s(1) = 2*k*(u(2)-u(1)^2);
s(2) = k*(u(1)^2-u(2));
end
function u0 = icfun(x)
u0=ones(2,1);
u0(1) = exp(-(x-center)^2/(2*std^2))/(sqrt(2*pi)*std);
u0(2) = exp(-(x-center)^2/(2*std^2))/(sqrt(2*pi)*std);
end
function [pL,qL,pR,qR] = bcfun(xL,uL,xR,uR,t)
pL=zeros(2,1);
pL(1) = uL(1);
pL(2) = uL(2);
pR=zeros(2,1);
pR(1) = uR(1);
pR(2) = uR(2);
qL = [0 0;0 0];
qR = [0 0;0 0];
end
end
Uncoupled case
function [xmesh,tspan,sol] = uncoupled()
std=0.001; %width of initial gaussian
center=1/2; %center of gaussian
xmesh=linspace(0,1,10000);
tspan=linspace(0,1,1000);
sol = pdepe(0,#pdefun,#icfun,#bcfun,xmesh,tspan);
function [c,f,s] = pdefun(x,t,u,dudx)
c=1;
f = dudx;
s=0;
end
function u0 = icfun(x)
u0=exp(-(x-center)^2/(2*std^2))/(sqrt(2*pi)*std);
end
function [pL,qL,pR,qR] = bcfun(xL,uL,xR,uR,t)
pL=uL;
pR=uR;
qL = 0;
qR = 0;
end
end
Now, suppose we run
[xmesh,tspan,soluncoupled] = uncoupled();
[xmesh,tspan,solcoupled] = coupled(0); %coupling k=0, i.e. uncoupled solutions
One can directly check by plotting the solutions for any time index $it$ that, even if they should be identical, the solutions given by each function are not identical, e.g.
hold all
plot(xmesh,soluncoupled(it+1,:),'b')
plot(xmesh,solcoupled(it+1,:,1),'r')
plot(xmesh,solcoupled(it+1,:,2),'g')
On the other hand, if we double the time of the uncoupled solution, the solutions are identical
hold all
plot(xmesh,soluncoupled(2*it+1,:),'b')
plot(xmesh,solcoupled(it+1,:,1),'r')
plot(xmesh,solcoupled(it+1,:,2),'g')
The case $k=0$ is not singular, one can set $k$ to be small but finite, and the deviations from the case $k=0$ are minimal, i.e. the solution still goes twice as fast as the uncoupled solution.
I really don't understand what is going on. I need to work on the coupled case, but obviously I don't trust the results if it does not give the right limit when $k\to 0$. I don't see where I could be making a mistake. Could it be a bug?
I found the source of the error. The problem lies in the qL and qR variables of bcfun for the coupled() function. The MATLAB documentation, see here and here, is slightly ambiguous on whether the q's should be matrices or column vectors. I had used matrices
qL = [0 0;0 0];
qR = [0 0;0 0];
but in reality I should have used column vectors
qL = [0;0];
qR = [0;0];
Amazingly, pdpe didn't throw an error, and simply gave wrong results. This should perhaps be fixed by the developers.

Solving system of equations on MATLAB, when a constant exists in variable matrix?

How do I solve the following system of equations on MATLAB when one of the elements of the variable vector is a constant? Please do give the code if possible.
More generally, if the solution is to use symbolic math, how will I go about generating large number of variables, say 12 (rather than just two) even before solving them?
For example, create a number of symbolic variables using syms, and then make the system of equations like below.
syms a1 a2
A = [matrix]
x = [1;a1;a2];
y = [1;0;0];
eqs = A*x == y
sol = solve(eqs,[a1, a2])
sol.a1
sol.a2
In case you have a system with many variables, you could define all the symbols using syms, and solve it like above.
You could also perform a parameter optimization with fminsearch. First you have to define a cost function, in a separate function file, in this example called cost_fcn.m.
function J = cost_fcn(p)
% make sure p is a vector
p = reshape(p, [length(p) 1]);
% system of equations, can be linear or nonlinear
A = magic(12); % your system, I took some arbitrary matrix
sol = A*p;
% the goal of the system of equations to reach, can be zero, or some other
% vector
goal = zeros(12,1);
% calculate the error
error = goal - sol;
% Use a cost criterion, e.g. sum of squares
J = sum(error.^2);
end
This cost function will contain your system of equations, and goal solution. This can be any kind of system. The vector p will contain the parameters that are being estimated, which will be optimized, starting from some initial guess. To do the optimization, you will have to create a script:
% initial guess, can be zeros, or some other starting point
p0 = zeros(12,1);
% do the parameter optimization
p = fminsearch(#cost_fcn, p0);
In this case p0 is the initial guess, which you provide to fminsearch. Then the values of this initial guess will be incremented, until a minimum to the cost function is found. When the parameter optimization is finished, p will contain the parameters that will result in the lowest error for your system of equations. It is however possible that this is a local minimum, if there is no exact solution to the problem.
Your system is over-constrained, meaning you have more equations than unknown, so you can't solve it. What you can do is find a least square solution, using mldivide. First re-arrange your equations so that you have all the constant terms on the right side of the equal sign, then use mldivide:
>> A = [0.0297 -1.7796; 2.2749 0.0297; 0.0297 2.2749]
A =
0.029700 -1.779600
2.274900 0.029700
0.029700 2.274900
>> b = [1-2.2749; -0.0297; 1.7796]
b =
-1.274900
-0.029700
1.779600
>> A\b
ans =
-0.022191
0.757299

How do I optimize constrained integral expressions in MATLAB using anonymous functions?

I have an integrated error expression E = int[ abs(x-p)^2 ]dx with limits x|0 to x|L. The variable p is a polynomial of the form 2*(a*sin(x)+b(a)*sin(2*x)+c(a)*sin(3*x)). In other words, both coefficients b and c are known expressions of a. An additional equation is given as dE/da = 0. If the upper limit L is defined, the system of equations is closed and I can solve for a, giving the three coefficients.
I managed to get an optimization routine to solve for a purely based on maximizing L. This is confirmed by setting optimize=0 in the code below. It gives the same solution as if I solved the problem analytically. Therefore, I know the equations to solve for the coefficent a are correct.
I know the example I presented can be solved with pencil and paper, but I'm trying to build an optimization function that is generalized for this type of problem (I have a lot to evaluate). Ideally, polynomial is given as an input argument to a function which then outputs xsol. Obviously, I need to get the optimization to work for the polynomial I presented here before I can worry about generalizations.
Anyway, I now need to further optimize the problem with some constraints. To start, L is chosen. This allows me to calculate a. Once a is know, the polynomial is a known function of x only i.e p(x). I need to then determine the largest INTERVAL from 0->x over which the following constraint is satisfied: |dp(x)/dx - 1| < tol. This gives me a measure of the performance of the polynomial with the coefficient a. The interval is what I call the "bandwidth". I would like to emphasis two things: 1) The "bandwidth" is NOT the same as L. 2) All values of x within the "bandwidth" must meet the constraint. The function dp(x)/dx does oscillate in and out of the tolerance criteria, so testing the criteria for a single value of x does not work. It must be tested over an interval. The first instance of violation defines the bandwidth. I need to maximize this "bandwidth"/interval. For output, I also need to know which L lead to such an optimization, hence I know the correct a to choose for the given constraints. That is the formal problem statement. (I hope I got it right this time)
Now my problem is setting this whole thing up with MATLAB's optimization tools. I tried to follow ideas from the following articles:
Tutorial for the Optimization Toolbox™
Setting optimize=1 for the if statement will work with the constrained optimization. I thought some how nested optimization is involved, but I couldn't get anything to work. I provided known solutions to the problem from the IMSL optimization library to compare/check with. They are written below the optimization routine. Anyway, here is the code I've put together so far:
function [history] = testing()
% History
history.fval = [];
history.x = [];
history.a = [];
%----------------
% Equations
polynomial = #(x,a) 2*sin(x)*a + 2*sin(2*x)*(9/20 -(4*a)/5) + 2*sin(3*x)*(a/5 - 2/15);
dpdx = #(x,a) 2*cos(x)*a + 4*cos(2*x)*(9/20 -(4*a)/5) + 6*cos(3*x)*(a/5 - 2/15);
% Upper limit of integration
IC = 0.8; % initial
LB = 0; % lower
UB = pi/2; % upper
% Optimization
tol = 0.003;
% Coefficient
% --------------------------------------------------------------------------------------------
dpda = #(x,a) 2*sin(x) + 2*sin(2*x)*(-4/5) + 2*sin(3*x)*1/5;
dEda = #(L,a) -2*integral(#(x) (x-polynomial(x,a)).*dpda(x,a),0,L);
a_of_L = #(L) fzero(#(a)dEda(L,a),0); % Calculate the value of "a" for a given "L"
EXITFLAG = #(L) get_outputs(#()a_of_L(L),3); % Be sure a zero is actually calculated
% NL Constraints
% --------------------------------------------------------------------------------------------
% Equality constraint (No inequality constraints for parent optimization)
ceq = #(L) EXITFLAG(L) - 1; % Just make sure fzero finds unique solution
confun = #(L) deal([],ceq(L));
% Objective function
% --------------------------------------------------------------------------------------------
% (Set optimize=0 to test coefficent equations and proper maximization of L )
optimize = 1;
if optimize
%%%% Plug in solution below
else
% Optimization options
options = optimset('Algorithm','interior-point','Display','iter','MaxIter',500,'OutputFcn',#outfun);
% Optimize objective
objective = #(L) -L;
xsol = fmincon(objective,IC,[],[],[],[],LB,UB,confun,options);
% Known optimized solution from IMSL library
% a = 0.799266;
% lim = pi/2;
disp(['IMSL coeff (a): 0.799266 Upper bound (L): ',num2str(pi/2)])
disp(['code coeff (a): ',num2str(history.a(end)),' Upper bound: ',num2str(xsol)])
end
% http://stackoverflow.com/questions/7921133/anonymous-functions-calling-functions-with-multiple-output-forms
function varargout = get_outputs(fn, ixsOutputs)
output_cell = cell(1,max(ixsOutputs));
[output_cell{:}] = (fn());
varargout = output_cell(ixsOutputs);
end
function stop = outfun(x,optimValues,state)
stop = false;
switch state
case 'init'
case 'iter'
% Concatenate current point and objective function
% value with history. x must be a row vector.
history.fval = [history.fval; optimValues.fval];
history.x = [history.x; x(1)];
history.a = [history.a; a_of_L(x(1))];
case 'done'
otherwise
end
end
end
I could really use some help setting up the constrained optimization. I'm not only new to optimizations, I've never used MATLAB to do so. I should also note that what I have above does not work and is incorrect for the constrained optimization.
UPDATE: I added a for loop in the section if optimizeto show what I'm trying to achieve with the optimization. Obviously, I could just use this, but it seems very inefficient, especially if I increase the resolution of range and have to run this optimization many times. If you uncomment the plots, it will show how the bandwidth behaves. By looping over the full range, I'm basically testing every L but surely there's got to be a more efficient way to do this??
UPDATE: Solved
So it seems fmincon is not the only tool for this job. In fact I couldn't even get it to work. Below, fmincon gets "stuck" on the IC and refuses to do anything...why...that's for a different post! Using the same layout and formulation, fminbnd finds the correct solution. The only difference, as far as I know, is that the former was using a conditional. But my conditional is nothing fancy, and really unneeded. So it's got to have something to do with the algorithm. I guess that's what you get when using a "black box". Anyway, after a long, drawn out, painful, learning experience, here is a solution:
options = optimset('Display','iter','MaxIter',500,'OutputFcn',#outfun);
% Conditional
index = #(L) min(find(abs([dpdx(range(range<=L),a_of_L(L)),inf] - 1) - tol > 0,1,'first'),length(range));
% Optimize
%xsol = fmincon(#(L) -range(index(L)),IC,[],[],[],[],LB,UB,confun,options);
xsol = fminbnd(#(L) -range(index(L)),LB,UB,options);
I would like to especially thank #AndrasDeak for all their support. I wouldn't have figured it out without the assistance!

Euler's approximation in MATLAB

I have a project in MATLAB where I am to approximate the solution of a diff equation. To do that, I use ode45 to get the "real solution" and compare it to Euler's approximation that I perform 3 times with halving the step every time. Here are my issues:
ode45 doesn't seem to work on my computer. I get this message:
No help found for ode45.m.
When I type help ode45 in the commando window and this
Error using ode45
Too many input arguments.
Error in Lab2 (line 51)
[f, u] = ode45(#myode, [pi/6 pi/2], 1);
So I switched to ode23 and got a what I thought to be a quite good result. Problem is though that I noticed that the error in the last approximation becomes slightly smaller which shouldn't happens since the error gets only larger by every step... right?
To makes things worse, I tried to run my code with ode23 on the school computer and got different results (different solution curve). I tried then ode45 and got the same results. When I look at the curve and its values it is totally wrong since in my diff equation values should be decreasing instead of increasing like they do when I run them on the school computer.
I don't understand how the same code can produce two different results on different computers.
I don't understand either why ode45 is missing from my computer. I have tried re-installing the new version and it is still the same.
I am totally confused...
Here is my code:
This is in a function file named myode
function dudf = myode(f,u)
k=1/20;
dudf = (-k*u.^3)/sin(f).^3;
end
This is the program
%Euler's method
f_init = pi/6;
f_final = pi/2;
u_init = 1;
k = 1/20;
n = 10; %number of steps
h(1) = (f_final-f_init)/n;
fh(1) = f_init;
uh(1) = u_init;
%calculate euler's approximation after every step
for i = 2:n+1
fh(i) = fh(i-1)+h;
uh(i) = uh(i-1)+h*(-k*uh(i-1)^3)/(sin(fh(i-1))^3);
end
%save vaules of ode45 at every step for first appr.
step0=pi/30;
fiend = pi/6 + step0;
odeu1 = [1];
step1 = [pi/6];
for i = 1:length(uh)-1
[f, u] = ode23(#myode, [pi/6 fiend], 1);
odeu1 = [odeu1 u(end)];
step1 = [step1 fislut];
fiend = fiend + step0;
end
Any help is appreciated!

MATLAB Optimization Error

My Genetic Algorithm optimization script on Matlab runs, but at the end produces the following message: "Optimization terminated: average change in the penalty fitness value less than options.TolFun but constraints are not satisfied."
Why would it say that? I replaced my fitness function with one that does nothing but returns a constant number, and nothing changed. It may be the case that my constraints are not defined correctly, though I can't find the mistake. Here is the relevant part of the code:
nGenerators = 9;
monthlyHours = 24*daysInJanuary;
(some irrelevant code here)
steamCapacities = [31.46*ones(1,2) 5.5*ones(1,3) 4*ones(1,4)];
nVars = xSize;
IntCon = 1:nVars;
LB = zeros(1, nVars);
UB = ones(1, nVars);
b = -1*steamLoad; % Ax <= b
A = zeros(monthlyHours, xSize);
for p = 1:monthlyHours
A(p, 9*p-8:9*p) = -1*steamCapacities;
% disp(p);
end
(some more code here)
anonFitness = #(x)mosb_test(x, fitnessData);
gaOptions = gaoptimset('Vectorized', 'off', 'UseParallel', 'always', ...
'Display', 'diagnose', 'PlotFcn', #gaplotbestf, 'Generations', 300, ...
'TolFun', 1e-15, 'StallGenLimit', 200);
[x, fval, exitFlag] = ga(anonFitness, nVars, A, b,[],[], LB, UB, [], IntCon, gaOptions);
Here, x represents the on/off states for a set of 9 generators for each hour of the month. Their steam production capacities are as in the variable steamCapacities, and there is a constant steam load that has to be met at every hour. This is represented by the inequality constraint.
Any help appreciated.
Interesting problem! Too bad it can't be solved deterministically. :-( Anyway, your TolFun is defined by the mathworks as being:
Positive scalar. The algorithm stops if the weighted average relative
change in the best fitness function value over StallGenLimit
generations is less than or equal to TolFun
and StallGenLimit has the same description. It makes perfect sense that a constant will give you the same error. It appears to me that the GA is unable to converge to a solution in the StallGenLimit, here 200, generations. You could try making the TolFun more restrictive, like 1e-12, or try and develop a far simpler model for the GA, one that will just allow you to find a solution. Then build complexity on this model until it matches your real system. Likely, it will fail at some point and you will be able to see why the problem can't be solved like too many degrees of freedom, too tight of constraints, etc. HTH!