RxSwift - Construct the Observable using function inside transform function - swift

Here's my code snippet:
open class SomeClass {
let driver: Driver<Bool>
init(input: Observable<String>) {
driver = input
.map( { s -> Bool in self.convert(text: s) }) // error 'self' captured by a closure before all members were initialized
.asDriver(onErrorJustReturn: false)
}
func convert(text: String) -> Bool {
// Do some complex calculation
return true
}
}
Explanation: In my SomeClass, I have a driver object of type Driver<Bool>, then inside my init, I'll take an Observable<String> and map it to a Observable<Bool>.
However in order to do the conversion I need to call the func convert() inside the mapping closure, thus I'm getting the error
'self' captured by a closure before all members were initialized
Can someone please show me how to get through this?

The simplest solution is to move convert out of the class:
open class SomeClass {
let driver: Driver<Bool>
init(input: Observable<String>) {
driver = input
.map( { s -> Bool in convert(text: s) }) // error 'self' captured by a closure before all members were initialized
.asDriver(onErrorJustReturn: false)
}
}
func convert(text: String) -> Bool {
// Do some complex calculation
return true
}
You should probably make convert(text:) private to avoid name pollution.

Related

error: cannot invoke 'onNext' with an argument list of type '(String)' RxSwift

Why is the following RxSwift code not compiling and how do I solve the problem? This line observer.onNext("test123") is the problem.
final class TestA<String>: ObservableType {
typealias E = String
private let _observable: Observable<String>
init() {
_observable = Observable<String>.create { observer -> Disposable in
print("mark 1")
observer.onNext("test123")
observer.onCompleted()
return Disposables.create()
}
}
func subscribe<O>(_ observer: O) -> Disposable where O : ObserverType, O.E == E {
return _observable.subscribe(observer)
}
}
let observable = TestA<String>()
print("mark 2")
observable.subscribe(onNext: { element in
print(element)
})
I am testing in the playground and get the following error:
Playground execution failed:
error: Introduction.xcplaygroundpage:25:26: error: cannot invoke 'onNext' > with an argument list of type '(String)'
observer.onNext("test123")
^
Introduction.xcplaygroundpage:25:26: note: expected an argument list of > type '(String)'
observer.onNext("test123")
^
One of the reasons behind this setup with the class is that I want to pass in the dependencies with constructor injection and use them in the create closure in order to avoid having to capture self. I also want to avoid having all those Observable.creates in the wild and have a more OOP approach.
The swift compiler was not helpful with this error...
The problem here is that, when declaring TestA, you override the name String to represent the generic parameter for TestA. It is then an error to sent a Swift.String as a parameter to an observer expecting a TestA.String, which could be anything.
You can fix the issue with removing the unused generic parameter (final class TestA: ObservableType { ...), or taking the value sent to onNext as a parameter to the init, depending on the use case.
final class TestA<Element>: ObservableType {
typealias E = Element
private let _observable: Observable<Element>
init(_ value: Element) {
_observable = Observable<Element>.create { observer -> Disposable in
print("mark 1")
observer.onNext(value)
observer.onCompleted()
return Disposables.create()
}
}
func subscribe<O>(_ observer: O) -> Disposable where O : ObserverType, O.E == E {
return _observable.subscribe(observer)
}
}

Subclass Type as closure parameter

Usecase
I have a superclass (FirebaseObject) with subclasses for most data items in my Firebase (ex: RecipeItem, User). I made a function in the superclass that automatically updates the data that is in the subclass, now I am trying to make a function with closures that get called when the object is updated.
Code
class FirebaseObject {
private var closures: [((FirebaseObject) -> Void)] = []
public func didChange(completion: #escaping (((FirebaseObject) -> Void))) {
// Save closures for future updates to object
closures.append(completion)
// Activate closure with the current object
completion(self)
}
//...
}
This calls the closure with the initial object and saves it for later updates. In my Firebase observer I can now activate all the closures after the data is updated by calling:
self.closures.forEach { $0(self) }
To add these closures that listen for object changes I need to do:
let recipeObject = RecipeItem(data)
recipeObject.didChange { newFirebaseObject in
// Need to set Type even though recipeObject was already RecipeItem
// this will never fail
if let newRecipeObject = newFirebaseObject as? RecipeItem {
// Do something with newRecipeObject
}
}
Question
Is there a way to have the completion handler return the type of the subclass so I don't have to do as? Subclass even though it won't ever fail? I tried to do this with generic type but I can't figure it out and I am not sure if this is the correct solution.
I would like to keep most code in the FirebaseObject class so I don't need to add a lot of code when creating a new subclass.
Edit
Based on this article I tried to add the type when creating a subclass:
class RecipeItem: FirebaseObject<RecipeItem> {
//...
}
class FirebaseObject<ItemType> {
private var handlers: [((ItemType) -> Void)] = []
public func didChange(completion: #escaping (((ItemType) -> Void))) {
//...
This compiles but it crashes as soon as RecipeItem is initialised. I also tried
class RecipeItem: FirebaseObject<RecipeItem.Type> {
//...
}
But this gives an interesting compiler error when I try to access RecipeItem data in didChange closure:
Instance member 'title' cannot be used on type 'RecipeItem'
Ok, so I've been working on this for a day and I have found a way to do it using the method in this answer for the didChange and initObserver functions and taking inspiration from this way of saving data in extensions.
First off, all the functions that need to use the type of the subclass are moved to a protocol.
protocol FirebaseObjectType {}
extension FirebaseObjectType where Self: FirebaseObject {
private func initObserver(at ref: DatabaseReference) {
//...
}
mutating func didChange(completion: #escaping (((Self) -> Void))) {
if observer == nil {
// init Firebase observer here so there will be no Firebase
// observer running when you don't check for changes of the
// object, and so the Firebase call uses the type of whatever
// FirebaseObject this function is called on eg:
// RecipeItem.didChange returns RecipeItem
// and NOT:
// RecipeItem.didChange returns FirebaseObject
initObserver(at: ref)
}
if closureWrapper == nil {
// init closureWrapper here instead of in init() so it uses
// the class this function is called on instead of FirebaseObject
closureWrapper = ClosureWrapper<Self>()
}
// Save closure for future updates to object
closures.append(completion)
// Activate closure with current object
completion(self)
}
}
To save the closures I now use a wrapper class so I can do type checking on that. In FirebaseObject:
class ClosureWrapper<T> {
var array: [((T) -> Void)]
init() {
array = []
}
}
fileprivate var closureWrapper: AnyObject?
Now I can get the closures with the right type in FirebaseObjectType protocol:
private var closures: [((Self) -> Void)] {
get {
let closureWrapper = self.closureWrapper as? ClosureWrapper<Self>
return closureWrapper?.array ?? []
}
set {
if let closureWrapper = closureWrapper as? ClosureWrapper<Self> {
closureWrapper.array = newValue
}
}
}
I can now use didChange on a FirebaseObject subclass without checking its type every time.
var recipe = RecipeItem(data)
recipe.didChange { newRecipe in
// Do something with newRecipe
}

Modifying an array passed as an argument to a function in Swift

Sorry for the newbie question; I'm still learning. I'm running into some odd behavior and couldn't find any documentation on this. I was wondering if you can help point out what I'm doing wrong here.
Error:
Cannot use mutating member on immutable value: 'arr' is a 'let' constant
class mySingleton {
static let sharedInstance = mySingleton()
private init() {}
var men = ["bob", "doug"]
var women = ["alice", "lisa"]
func removeFirst() {
self.arr.removeFirst()
}
func removeFirstByGender(gender: String) {
if gender == "men" {
self.modify(arr: self.men) // <-- error occurs here.
} else {
self.modify(arr: self.women) // <-- error occurs here.
}
}
func modify(arr: [String]) {
arr.removeFirst()
}
}
You need to change the definition of modify to accept an inout parameter. By default, function arguments are immutable, but by using the inout keyword, you can make them mutable. You also need to pass the argument by reference.
func modify( arr: inout [String]) {
arr.removeFirst()
}
var stringArr = ["a","b"]
modify(arr: &stringArr) //stringArr = ["b"] after the function call

implicit return in a closure causing an error

Error: Cannot convert the expression type (String, MyType) to ()
From the following code
Test(method: {[weak self] (message: String) in self?.callback(message)}, instance: self)
and if I add a return statement, it works, and the error goes away
Test(method: {[weak self] (message: String) in self?.callback(message); return}, instance: self)
Not sure how to handle the above without having to have the dummy return statement, any advise.
Here's my class Test
public class Test {
private var instance: AnyObject?
private var method: ((message: String) -> ())?
public init(method: (String -> ())?, instance: AnyObject) {
}
}
Edit
I've done a playground based minimalistic example (please copy paste for a test)
class Test {
private var _method: ((String) -> ())?
weak private var _instance: AnyObject?
init(method: (String -> ())?, instance: AnyObject?) {
_method = method
_instance = instance
}
}
class Another {
func register() {
//this doesn't need a return
Test(method: {(message: String) in self.callback(message)}, instance: self)
//this needs a return once I add [weak self]
Test(method: { [weak self] (message: String) in self?.callback(message); return}, instance: self)
}
func callback(message: String) {
println(message)
}
}
Not sure how to handle the above without having to have the dummy return statement, any advise.
You have solved the problem beautifully. Anonymous functions automatically use a one-line function body as a return value, so to prevent that from causing a type mismatch with the expected return type (Void) you have to add another line of code so that it is not a one-line function body. The dummy return statement, which itself returns Void, is a great way to handle it; I would just use that and move on. There are some snazzier workarounds but what you have is precisely what I would do.
EDIT: To understand the source of the type mismatch, try this:
struct Test {
func voider() -> Void {}
}
let testMaybe = Optional(Test())
let result = testMaybe?.voider()
Now result is not a Void; it's an Optional wrapping a Void. That is what's happening to you; a Void is expected but your one-line anonymous function returns an Optional wrapping a Void. By adding another line that returns Void explicitly, you solved the problem.
The implicit return is returning the result of your callback() method. That return value conflicts with the closure's return value of void. You thus need an explicit, if ugly, return.

Anonymous class in swift

Is there an equivalent syntax or technique for Anonymous class in Swift?
Just for clarification Anonymous class in Java example here - http://docs.oracle.com/javase/tutorial/java/javaOO/anonymousclasses.html
Thanks!
There is no equivalent syntax, as far as I know.
Regarding equivalent techniques, theoretically you could use closures and define structs and classes inside them. Sadly, I can't get this to work in a playground or project without making it crash. Most likely this isn't ready to be used in the current beta.
Something like...
protocol SomeProtocol {
func hello()
}
let closure : () -> () = {
class NotSoAnonymousClass : SomeProtocol {
func hello() {
println("Hello")
}
}
let object = NotSoAnonymousClass()
object.hello()
}
...currently outputs this error:
invalid linkage type for global declaration
%swift.full_heapmetadata* #_TMdCFIv4Test7closureFT_T_iU_FT_T_L_19NotSoAnonymousClass
LLVM ERROR: Broken module found, compilation aborted!
Command /Applications/Xcode6-Beta.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/swift failed with exit code 1
You can also create a basic empty class that acts like a bare protocol, and pass a closure to the init function that overrides anything you want, like this:
class EmptyClass {
var someFunc: () -> () = { }
init(overrides: EmptyClass -> EmptyClass) {
overrides(self)
}
}
// Now you initialize 'EmptyClass' with a closure that sets
// whatever variable properties you want to override:
let workingClass = EmptyClass { ec in
ec.someFunc = { println("It worked!") }
return ec
}
workingClass.someFunc() // Outputs: "It worked!"
It is not technically 'anonymous' but it works the same way. You are given an empty shell of a class, and then you fill it in or override whatever parameters you want when you initialize it with a closure.
It's basically the same, except instead of fulfilling the expectations of a protocol, it is overriding the properties of a class.
For example, Java listener/adapter pattern would be translated to Swift like this:
protocol EventListener {
func handleEvent(event: Int) -> ()
}
class Adapter : EventListener {
func handleEvent(event: Int) -> () {
}
}
var instance: EventListener = {
class NotSoAnonymous : Adapter {
override func handleEvent(event: Int) {
println("Event: \(event)")
}
}
return NotSoAnonymous()
}()
instance.handleEvent(10)
(Crashing the compiler on Beta 2)
The problem is, you always have to specify a name. I don't think Apple will ever introduce anonymous classes (and structs etc.) because it would be pretty difficult to come with a syntax that doesn't collide with the trailing closures.
Also in programming anonymous things are bad. Naming things help readers to understand the code.
No anonymous class syntax in Swift. But, you can create a class inside a class and class methods:
class ViewController: UIViewController {
class anonymousSwiftClass {
func add(number1:Int, number2:Int) -> Int {
return number1+number2;
}
}
override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
class innerSwiftClass {
func sub(number1:Int, number2:Int) -> Int {
return number1-number2;
}
}
var inner = innerSwiftClass();
println(inner.sub(2, number2: 3));
var anonymous = anonymousSwiftClass();
println(anonymous.add(2, number2: 3));
}
}
This is what I ended up doing (Observer pattern). You can use closures in a similar way you would use anonymous classes in Java. With obvious limitations of course.
class Subject {
// array of closures
var observers: [() -> Void] = []
// #escaping says the closure will be called after the method returns
func register(observer: #escaping () -> Void) {
observers.append(observer)
}
func triggerEvent() {
observers.forEach { observer in
observer()
}
}
}
var subj = Subject()
// you can use a trailing closure
subj.register() {
print("observerd")
}
// or you can assign a closure to a variable so you can maybe use the reference to removeObserver() if you choose to implement that method
var namedObserver: () -> Void = {
print("named observer")
}
subj.register(observer: namedObserver)
subj.triggerEvent()
// output:
// observerd
// named observer
If you want to inline a click handler in Java style fashion, first define your closure as a variable in your button class:
var onButtonClick: () -> Void = {}
Then add a method to accept the closure as parameter and store it in the variable for later use:
func onClick(label: String, buttonClickHandler: #escaping () -> Void) {
button.label = label
onButtonClick = buttonClickHandler
}
Whenever the closure should be executed, call it in your button class:
onButtonClick()
And this is how to set the action that should occur on click:
newButton.onClick(label: "My button") { () in
print("button clicked")
}
You can also accept multiple parameters. For example, a toggle button may be handled like this:
var buttonClicked: (_ isOn: Bool) -> Void { set get }
Simply use a struct for defining the interface via function values and then anonymously implement it from a function, as is a very common way to write objects in JavaScript.
The function is only required for creating a private scope for the object returned.
import Foundation
struct Logger {
let info: (String) -> ()
let error: (String) -> ()
}
func createSimpleLogger() -> Logger {
var count = 0
func number() -> Int {
count += 1
return count
}
return Logger(
info: { message in
print("INFO - #\(number()) - \(message)")
},
error: { message in
print("ERROR - #\(number()) - \(message)")
}
)
}
let logger = createSimpleLogger()
logger.info("Example info log message")
logger.error("Example error log message")
Output:
INFO - #1 - Example info log message
ERROR - #2 - Example error log message