I have a topic with 20 partitions and 3 processes with consumers(with the same group_id) consuming messages from the topic.
But I am seeing a discrepancy where unless one of the process commits , the other consumer(in a different process) is not reading any message.
The consumers in other process do cconsume messages when I set auto-commit to true. (which is why I suspect the consumers are being assigned to the first partition in each process)
Can someone please help me out with this issue? And also how to consume messages parallely across processes ?
If it is of any use , I am doing this on a pod(kubernetes) , where the 3 processes are 3 different mules.
Commit shouldn't make any difference because the committed offset is only used when there is a change in group membership. With three processes there would be some rebalancing while they start up but then when all 3 are running they will each have a fair share of the partitions.
Each time they poll, they keep track in memory of which offset they have consumed on each partition and each poll causes them to fetch from that point on. Whether they commit or not doesn't affect that behaviour.
Autocommit also makes little difference - it just means a commit is done synchronously during a subsequent poll rather than your application code doing it. The only real reason to manually commit is if you spawn other threads to process messages and so need to avoid committing messages that have not actually been processed - doing this is generally not advisable - better to add consumers to increase throughput rather than trying to share out processing within a consumer.
One possible explanation is just infrequent polling. You mention that other consumers are picking up partitions, and committing affects behaviour so I think it is safe to say that rebalances must be happening. Rebalances are caused by either a change in partitions at the broker (presumably not the case) or a change in group membership caused by either heartbeat thread dying (a pod being stopped) or a consumer failing to poll for a long time (default 5 minutes, set by max.poll.interval.ms)
After a rebalance, each partition is assigned to a consumer, and if a previous consumer has ever committed an offset for that partition, then the new one will poll from that offset. If not then the new one will poll from either the start of the partition or the high watermark - set by auto.offset.reset - default is latest (high watermark)
So, if you have a consumer, it polls but doesn't commit, and doesn't poll again for 5 minutes then a rebalance happens, a new consumer picks up the partition, starts from the end (so skipping any messages up to that point). Its first poll will return nothing as it is starting from the end. If it doesn't poll for 5 minutes another rebalance happens and the sequence repeats.
That could be the cause - there should be more information about what is going on in your logs - Kafka consumer code puts in plenty of helpful INFO level logging about rebalances.
Related
I have a Python process (or rather, set of processes running in parallel within a consumer group) that processes data according to inputs coming in as Kafka messages from certain topic. Usually each message is processed quickly, but sometimes, depending on the content of the message, it may take a long time (several minutes). In this case, Kafka broker disconnects the client from the group and initiates the rebalance. I could set session_timeout_ms to a really large value but it would be like 10 minutes of more, which means if a client dies, the cluster would not be properly rebalanced for 10 minutes. This seems to be a bad idea. Also, most messages (about 98% of them) are fast, so paying such penalty for just 1-2% of messages seems wasteful. OTOH, large messages are frequent enough to cause a lot of rebalances and cost a lot of performance (since while the group is rebalancing, nothing is getting done, and then the "dead" client re-joins again and causes another rebalance).
So, I wonder, are there any other ways for handling messages that take a long time to process? Is there any way to initiate heartbeats manually to tell the broker "it's ok, I am alive, I'm just working on the message"? I thought the Python client (I use kafka-python 1.4.7) was supposed to do that for me but it doesn't seem to happen. Also, the API doesn't seem to even have separate "heartbeat" function at all. And as I understand, calling poll() would actually get me the next messages - while I am not even done with the current one, and would also mess up iterator API for Kafka consumer, which is quite convenient to use in Python.
In case it's important, the Kafka cluster is Confluent, version 2.3 if I remember correctly.
In Kafka, 0.10.1+ Kafka polling and session heartbeat are decoupled to each other.
You can get an explanationhere
max.poll.interval.ms how much time permit to complete processing by consumer instance before time out means if processing time takes more than max.poll.interval.ms time Consumer Group will presume its die remove from Consumer Group and invoke rebalance.
To increase this will increase the interval between expected polls which give consumers more time to handle a batch of records returned from poll(long).
But at the same time, it will also delay group rebalances since the consumer will only join the rebalance inside the call to poll.
session.timeout.ms is the timeout used to identify if the consumer is still alive and sending a heartbeat on a defined interval (heartbeat.interval.ms). In general, the thumb-rule is heartbeat.interval.ms should be 1/3 of session timeout so in case of network failure consumers can miss at most 3-time heartbeat before session timeout.
session.timeout.ms: low value would be good to detect failure more quickly.
max.poll.interval.ms: large value will reduce the risk of failure due to increased processing time however increases the rebalancing time.
Note: A large number of partition and topics consumed by Consumer Group also effect on overall rebalance time
The other approach if you would really want to get rid of rebalancing you can assign partitions on each consumer instance manually, using partition assign. In that case, each consumer instance will be running independently with their own assigned partitions. But in that case, you would not able to leverage the rebalance features to assign partitions automatically.
Playing around with Apache Kafka and its retention mechanism I'm thinking about following situation:
A consumer fetches first batch of messages with offsets 1-5
The cleaner deletes the first 10 messages, so the topic now has offsets 11-15
In the next poll, the consumer fetches the next batch with offsets 11-15
As you can see the consumer lost the offsets 6-10.
Question, is such a situation possible at all? With other words, will the cleaner execute while there is an active consumer? If yes, is the consumer able to somehow recognize that gap?
Yes such a scenario can happen. The exact steps will be a bit different:
Consumer fetches message 1-5
Messages 1-10 are deleted
Consumer tries to fetch message 6 but this offset is out of range
Consumer uses its offset reset policy auto.offset.reset to find a new valid offset.
If set to latest, the consumer moves to the end of the partition
If set to earliest the consumer moves to offset 11
If none or unset, the consumer throws an exception
To avoid such scenarios, you should monitor the lead of your consumer group. It's similar to the lag, but the lead indicates how far from the start of the partition the consumer is. Being near the start has the risk of messages being deleted before they are consumed.
If consumers are near the limits, you can dynamically add more consumers or increase the topic retention size/time if needed.
Setting auto.offset.reset to none will throw an exception if this happens, the other values only log it.
Question, is such a situation possible at all? will the cleaner execute while there is an active consumer
Yes, if the messages have crossed TTL (Time to live) period before they are consumed, this situation is possible.
Is the consumer able to somehow recognize that gap?
In case where you suspect your configuration (high consumer lag, low TTL) might lead to this, the consumer should track offsets. kafka-consumer-groups.sh command gives you the information position of all consumers in a consumer group as well as how far behind the end of the log they are.
I'm new to Kafka and I'm trying to design a wrapper library in both Java and Go (uses Confluent/Kafka-Go) for Kafka to be used internally. For my use-case, CommitSync is a crucial step and we should do a read only after properly committing the old one. Repeated processing is not a big issue and our client service is idempotent enough. But data loss is a major issue and should not occur.
I will create X number of consumers initially and will keep on polling from them. Hence I would like to know more about the negative scenario's that could happen here, Impact of them and how to properly handle them.
I would like to know more about:
1) Network issue during consumer processing:
What happens when network goes of for a brief period and comes back? Does Kafka consumer automatically handle this and becomes alive when network comes back or do we have to reinitialise them? If they come back alive do they resume work from where they left of?
Eg: Consumer X read 50 records from Partition Y. Now internally the consumer offset moved to +50. But before committing network issue happens and the comes back alive. Now will the consumer have the metadata about what it read for last poll. Can it go on to commit +50 in offset?
2) Rebalancing in consumer groups. Impact of them on existing consumer process - whether the existing working consumer instance will pause and resume work during a rebalance or do we have to reinitialize them? How long can rebalance occur? If the consumer comes back alive after rebalance, does it have metadata about it last read?
3) What happens when a consumer joins during a rebalancing. Ideally it is again a rebalancing scenario. What will happen now? The existing will be discarded and the new one starts or will wait for the existing rebalance to complete?
What happens when network goes of for a brief period and comes back? Does Kafka consumer automatically handle this and becomes alive when network comes back or do we have to reinitialise them?
The consumer will try to reconnect. If the consumer group coordinator doesn't receive heartbeats or brokers don't respond to brokers, then the group rebalances.
If they come back alive do they resume work from where they left of?
From the last committed offset, yes.
whether the existing working consumer instance will pause and resume work during a rebalance
It will pause and resume. No action needed.
How long can rebalance occur?
Varies on many factors, and can happen indefinitely under certain conditions.
If the consumer comes back alive after rebalance, does it have metadata about it last read?
The last committed offsets are stored on the broker, not by consumers.
The existing will be discarded and the new one starts or will wait for the existing rebalance to complete?
All reblances must complete before any polls continue.
I'm running a Kafka cluster with 4 nodes, 1 producer and 1 consumer. It was working fine until consumer failed. Now after I restart the consumer, it starts consuming new messages but after some minutes it throws this error:
[WARN ]: org.apache.kafka.clients.consumer.internals.ConsumerCoordinator - Auto offset commit failed for group eventGroup: Commit cannot be completed since the group has already rebalanced and assigned the partitions to another member. This means that the time between subsequent calls to poll() was longer than the configured session.timeout.ms, which typically implies that the poll loop is spending too much time message processing. You can address this either by increasing the session timeout or by reducing the maximum size of batches returned in poll() with max.poll.records.
And it starts consuming the same messages again and loops forever.
I increased session timeout, tried to change group id and it still does the same thing.
Also is the client version of Kafka consumer a big deal?
I'd suggest you to decouple the consumer and the processing logic, to start with. E.g. let the Kafka consumer only poll messages and maybe after sanitizing the messages (if necessary) delegate the actual processing of each record to a separate thread, then see if the same error is still occurring. The error says, you're spending too much time between the subsequent polls, so this might resolve your issue. Also, please mention the version of Kafka you're using. Kafka had a different heartbeat management policy before version 0.10 which could make this issue easier to reproduce.
I see from the logs that exact same message is consumed by the 665 times. Why does this happen?
I also see this in the logs
Commit cannot be completed since the group has already rebalanced and assigned the partitions to another member.
This means that the time between subsequent calls to poll() was longer than the configured session.timeout.ms, which typically implies
that the poll loop is spending too much time message processing. You can address this either by increasing the session
timeout or by reducing the maximum size of batches returned in poll() with max.poll.records.
Consumer properties
group.id=someGroupId
bootstrap.servers=kafka:9092
enable.auto.commit=false
key.deserializer=org.apache.kafka.common.serialization.StringDeserializer
value.deserializer=org.apache.kafka.common.serialization.StringDeserializer
session.timeout.ms=30000
max.poll.records=20
PS: Is it possible to consume only a specific number of messages like 10 or 50 or 100 messages from the 1000 that are in the queue?
I was looking at 'fetch.max.bytes' config, but it seems like it is for a message size rather than number of messages.
Thanks
The answer lies in the understanding of the following concepts:
session.timeout.ms
heartbeats
max.poll.interval.ms
In your case, your consumer receives a message via poll() but is not able to complete the processing in max.poll.interval.ms time. Therefore, it is assumed hung by the Broker and re-balancing of partitions happen due to which this consumer loses the ownership of all partitions. It is marked dead and is no longer part of a consumer group.
Then when your consumer completes the processing and calls poll() again two things happen:
Commit fails as the consumer no longer owns the partitions.
Broker identifies that the consumer is up again and therefore a re-balance is triggered and the consumer again joins the Consumer Group, start owning partitions and request messages from the Broker. Since the earlier message was not marked as committed (refer #1 above, failed commit) and is pending processing, the broker delivers the same message to consumer again.
Consumer again takes a lot of time to process and since is unable to finish processing in less than max.poll.interval.ms, 1. and 2. keep repeating in a loop.
To fix the problem, you can increase the max.poll.interval.ms to a large enough value based on how much time your consumer needs for processing. Then your consumer will not get marked as dead and will not receive duplicate messages.
However, the real fix is to check your processing logic and try to reduce the processing time.
The fix is described in the message you pasted:
You can address this either by increasing the session timeout or by
reducing the maximum size of batches returned in poll() with
max.poll.records.
The reason is a timeout is reached before your consumer is able to process and commit the message. When your Kafka consumer "commits", it's basically acknowledging receipt of the previous message, advancing the offset, and therefore moving onto the next message. But if that timeout is passed (as is the case for you), the consumer's commit isn't effective because it's happening too late; then the next time the consumer asks for a message, it's given the same message
Some of your options are to:
Increase session.timeout.ms=30000, so the consumer has more time
process the messages
Decrease the max.poll.records=20 so the consumer has less messages it'll need to work on before the timeout occurs. But this doesn't really apply to you because your consumer is already only just working on a single message
Or turn on enable.auto.commit, which probably also isn't the best solution for you because it might result in dropping messages though, as mentioned below:
If we allowed offsets to auto commit as in the previous example
messages would be considered consumed after they were given out by the
consumer, and it would be possible that our process could fail after
we have read messages into our in-memory buffer but before they had
been inserted into the database.
Source: https://kafka.apache.org/090/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html