Join two array column in squence - scala - scala

I have a data frame with two Array column, trying to create a new column by joining both A and B sequentially.
val df = Seq((Seq("a","b","c"),Seq("d","5","6"))).toDF("A","B")
Expected output:
C: ["a d", "b 5", "c 6"]
I am exploring both the arrays and join it again using "import org.apache.spark.sql.functions.array" function but it's not giving expected result.

Got the expected result using the arrays_zip function as like below:
import org.apache.spark.sql.functions.arrays_zip
val output = df.withColumn(
"zipped", arrays_zip($"A", $"B")
)

I think Spark not have ready function for it. You can use user defined function here zip for example:
import spark.implicits._
def zipFunc: (Seq[String], Seq[String]) => Seq[String] = (x: Seq[String], y: Seq[String]) =>
x.zip(y).map{ case (xi, yi) => s"$xi $yi"}
val df = Seq(
(Seq("a","b","c"), Seq("d","5","6"))
).toDF("A","B")
df.printSchema()
val zipUDF = spark.udf.register("zipUdf", zipFunc)
df.withColumn("C", zipUDF($"A", $"B")).show()
prints:
+---------+---------+---------------+
| A| B| C|
+---------+---------+---------------+
|[a, b, c]|[d, 5, 6]|[a d, b 5, c 6]|
+---------+---------+---------------+

Related

Spark create a dataframe from multiple lists/arrays

So, I have 2 lists in Spark(scala). They both contain the same number of values. The first list a contains all strings and the second list b contains all Long's.
a: List[String] = List("a", "b", "c", "d")
b: List[Long] = List(17625182, 17625182, 1059731078, 100)
I also have a schema defined as follows:
val schema2=StructType(
Array(
StructField("check_name", StringType, true),
StructField("metric", DecimalType(38,0), true)
)
)
What is the best way to convert my lists to a single dataframe, that has schema schema2 and the columns are made from a and b respectively?
You can create an RDD[Row] and convert to Spark dataframe with the given schema:
val df = spark.createDataFrame(
sc.parallelize(a.zip(b).map(x => Row(x._1, BigDecimal(x._2)))),
schema2
)
df.show
+----------+----------+
|check_name| metric|
+----------+----------+
| a| 17625182|
| b| 17625182|
| c|1059731078|
| d| 100|
+----------+----------+
Using Dataset:
import spark.implicits._
case class Schema2(a: String, b: Long)
val el = (a zip b) map { case (a, b) => Schema2(a, b)}
val df = spark.createDataset(el).toDF()

Spark scala dataframe get value for each row and assign to variables

I have a dataframe like below :
val df=spark.sql("select * from table")
row1|row2|row3
A1,B1,C1
A2,B2,C2
A3,B3,C3
i want to iterate for loop to get values like this :
val value1="A1"
val value2="B1"
val value3="C1"
function(value1,value2,value3)
Please help me.
emphasized text
You have 2 options :
Solution 1- Your data is big, then you must stick with dataframes. So to apply a function on every row. We must define a UDF.
Solution 2- Your data is small, then you can collect the data to the driver machine and then iterate with a map.
Example:
val df = Seq((1,2,3), (4,5,6)).toDF("a", "b", "c")
def sum(a: Int, b: Int, c: Int) = a+b+c
// Solution 1
import org.apache.spark.sql.Row
val myUDF = udf((r: Row) => sum(r.getAs[Int](0), r.getAs[Int](1), r.getAs[Int](2)))
df.select(myUDF(struct($"a", $"b", $"c")).as("sum")).show
//Solution 2
df.collect.map(r=> sum(r.getAs[Int](0), r.getAs[Int](1), r.getAs[Int](2)))
Output for both cases:
+---+
|sum|
+---+
| 6|
| 15|
+---+
EDIT:
val myUDF = udf((r: Row) => {
val value1 = r.getAs[Int](0)
val value2 = r.getAs[Int](1)
val value3 = r.getAs[Int](2)
myFunction(value1, value2, value3)
})

How to extract efficiently multiple columns from a single string column RDD?

I have a file with 20+ columns of which I would like to extract a few. Until now, I have the following code. I'm sure there is a smart way to do it, but not able to get it working successfully. Any ideas?
mvnmdata is of type RDD[String]
val strpcols = mvnmdata.map(x => x.split('|')).map(x => (x(0),x(1),x(5),x(6),x(7),x(8),x(9),x(10),x(11),x(12),x(13),x(14),x(15),x(16),x(17),x(18),x(19),x(20),x(21),x(22),x(23) ))```
The next solution provides an easy and scalable way to manage your column names and indices. It is based on a map which determines the column name/index relation. The map will also help us to handle both the index of the extracted column and its name.
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.{StringType, StructType, StructField}
val rdd = spark.sparkContext.parallelize(Seq(
"1|500|400|300",
"1|34|67|89",
"2|10|20|56",
"3|2|5|56",
"3|1|8|22"))
val dictColums = Map("c0" -> 0, "c2" -> 2)
// create schema from map keys
val schema = StructType(dictColums.keys.toSeq.map(StructField(_, StringType, true)))
val mappedRDD = rdd.map{line => line.split('|')}
.map{
cols => Row.fromSeq(dictColums.values.toSeq.map{cols(_)})
}
val df = spark.createDataFrame(mappedRDD, schema).show
//output
+---+---+
| c0| c2|
+---+---+
| 1|400|
| 1| 67|
| 2| 20|
| 3| 5|
| 3| 8|
+---+---+
First we declare dictColums in this example we will extract the cols "c0" -> 0 and "c2" -> 2
Next we create the schema from the keys of the map
The one map (which you already have) will split the line by |, the second one will create a Row containing the values that correspond to each item of dictColums.values
UPDATE:
You could also create a function from the above functionality in order to be able to reuse it multiple times:
import org.apache.spark.sql.DataFrame
def stringRddToDataFrame(colsMapping: Map[String, Int], rdd: RDD[String]) : DataFrame = {
val schema = StructType(colsMapping.keys.toSeq.map(StructField(_, StringType, true)))
val mappedRDD = rdd.map{line => line.split('|')}
.map{
cols => Row.fromSeq(colsMapping.values.toSeq.map{cols(_)})
}
spark.createDataFrame(mappedRDD, schema)
}
And then use it for your case:
val cols = Map("c0" -> 0, "c1" -> 1, "c5" -> 5, ... "c23" -> 23)
val df = stringRddToDataFrame(cols, rdd)
As below,if you don't want to write repeated x(i),you can process it in a loop. Example 1:
val strpcols = mvnmdata.map(x => x.split('|'))
.map(x =>{
val xbuffer = new ArrayBuffer[String]()
for (i <- Array(0,1,5,6...)){
xbuffer.append(x(i))
}
xbuffer
})
If you only want to define the index list with start&end and the numbers to be excluded, see Example 2 of below:
scala> (1 to 10).toSet
res8: scala.collection.immutable.Set[Int] = Set(5, 10, 1, 6, 9, 2, 7, 3, 8, 4)
scala> ((1 to 10).toSet -- Set(2,9)).toArray.sortBy(row=>row)
res9: Array[Int] = Array(1, 3, 4, 5, 6, 7, 8, 10)
The final code you want:
//define the function to process indexes
def getSpecIndexes(start:Int, end:Int, removedValueSet:Set[Int]):Array[Int] = {
((start to end).toSet -- removedValueSet).toArray.sortBy(row=>row)
}
val strpcols = mvnmdata.map(x => x.split('|'))
.map(x =>{
val xbuffer = new ArrayBuffer[String]()
//call the function
for (i <- getSpecIndexes(0,100,Set(3,4,5,6))){
xbuffer.append(x(i))
}
xbuffer
})

How to convert map to dataframe?

m is a map as following:
scala> m
res119: scala.collection.mutable.Map[Any,Any] = Map(A-> 0.11164610291904906, B-> 0.11856755943424617, C -> 0.1023171832681312)
I want to get:
name score
A 0.11164610291904906
B 0.11856755943424617
C 0.1023171832681312
How to get the final dataframe?
First covert it to a Seq, then you can use the toDF() function.
val spark = SparkSession.builder.getOrCreate()
import spark.implicits._
val m = Map("A"-> 0.11164610291904906, "B"-> 0.11856755943424617, "C" -> 0.1023171832681312)
val df = m.toSeq.toDF("name", "score")
df.show
Will give you:
+----+-------------------+
|name| score|
+----+-------------------+
| A|0.11164610291904906|
| B|0.11856755943424617|
| C| 0.1023171832681312|
+----+-------------------+

SumProduct in Spark DataFrame

I want to create essentially a sumproduct across columns in a Spark DataFrame. I have a DataFrame that looks like this:
id val1 val2 val3 val4
123 10 5 7 5
I also have a Map that looks like:
val coefficents = Map("val1" -> 1, "val2" -> 2, "val3" -> 3, "val4" -> 4)
I want to take the value in each column of the DataFrame, multiply it by the corresponding value from the map, and return the result in a new column so essentially:
(10*1) + (5*2) + (7*3) + (5*4) = 61
I tried this:
val myDF1 = myDF.withColumn("mySum", {var a:Double = 0.0; for ((k,v) <- coefficients) a + (col(k).cast(DoubleType)*coefficients(k));a})
but got an error that the "+" method was overloaded. Even if I solved that, I'm not sure this would work. Any ideas? I could always dynamically build a SQL query as text string and do it that way but I was hoping for something a little more eloquent.
Any ideas are appreciated.
Problem with your code is that you try to add a Column to Double. cast(DoubleType) affects only a type of stored value, not a type of column itself. Since Double doesn't provide *(x: org.apache.spark.sql.Column): org.apache.spark.sql.Column method everything fails.
To make it work you can for example do something like this:
import org.apache.spark.sql.Column
import org.apache.spark.sql.functions.{col, lit}
val df = sc.parallelize(Seq(
(123, 10, 5, 7, 5), (456, 1, 1, 1, 1)
)).toDF("k", "val1", "val2", "val3", "val4")
val coefficients = Map("val1" -> 1, "val2" -> 2, "val3" -> 3, "val4" -> 4)
val dotProduct: Column = coefficients
// To be explicit you can replace
// col(k) * v with col(k) * lit(v)
// but it is not required here
// since we use * f Column.* method not Int.*
.map{ case (k, v) => col(k) * v } // * -> Column.*
.reduce(_ + _) // + -> Column.+
df.withColumn("mySum", dotProduct).show
// +---+----+----+----+----+-----+
// | k|val1|val2|val3|val4|mySum|
// +---+----+----+----+----+-----+
// |123| 10| 5| 7| 5| 61|
// |456| 1| 1| 1| 1| 10|
// +---+----+----+----+----+-----+
It looks like the issue is that you aren't actually doing anything with a
for((k, v) <- coefficients) a + ...
You probably meant a += ...
Also, some advice for cleaning up the block of code inside the withColumn call:
You don't need to call coefficients(k) because you've already got its value in v from for((k,v) <- coefficients)
Scala is pretty good at making one-liners, but it's kinda cheating if you have to put semicolons in that one line :P I'd suggest breaking up the sum calculation section into one line per expression.
The sum expression could be rewritten as a fold which avoids using a var (idiomatic Scala usually avoids vars), e.g.
import org.apache.spark.sql.functions.lit
coefficients.foldLeft(lit(0.0)){
case (sumSoFar, (k,v)) => col(k).cast(DoubleType) * v + sumSoFar
}
I'm not sure if this is possible through the DataFrame API since you are only able to work with columns and not any predefined closures (e.g. your parameter map).
I've outlined a way below using the underlying RDD of the DataFrame:
import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
// Initializing your input example.
val df1 = sc.parallelize(Seq((123, 10, 5, 7, 5))).toDF("id", "val1", "val2", "val3", "val4")
// Return column names as an array
val names = df1.columns
// Grab underlying RDD and zip elements with column names
val rdd1 = df1.rdd.map(row => (0 until row.length).map(row.getInt(_)).zip(names))
// Tack on accumulated total to the existing row
val rdd2 = rdd0.map { seq => Row.fromSeq(seq.map(_._1) :+ seq.map { case (value: Int, name: String) => value * coefficents.getOrElse(name, 0) }.sum) }
// Create output schema (with total)
val totalSchema = StructType(df1.schema.fields :+ StructField("total", IntegerType))
// Apply schema to create output dataframe
val df2 = sqlContext.createDataFrame(rdd1, totalSchema)
// Show output:
df2.show()
...
+---+----+----+----+----+-----+
| id|val1|val2|val3|val4|total|
+---+----+----+----+----+-----+
|123| 10| 5| 7| 5| 61|
+---+----+----+----+----+-----+