I have a batch job which I am try to convert to structured streaming. I am getting the following error:
20/03/31 15:09:23 ERROR Executor: Exception in task 0.0 in stage 0.0 (TID 0)
java.io.NotSerializableException: com.apple.ireporter.analytics.compute.AggregateKey
Serialization stack:
- object not serializable (class: com.apple.ireporter.analytics.compute.AggregateKey, value: d_)
... where "d_" is the last row in the dataset
This is the relevant code snippet
df.writeStream.foreachBatch { (batchDF: DataFrame, batchId: Long) =>
import spark.implicits._
val javaRdd = batchDF.toJavaRDD
val dataframeToRowColFunction = new RowToColumn(table)
println("Back to Main class")
val combinedRdd =javaRdd.flatMapToPair(dataframeToRowColFunction.FlatMapData2).combineByKey(aggrCreateComb.createCombiner,aggrMerge.aggrMerge,aggrMergeCombiner.aggrMergeCombiner)
// spark.createDataFrame( combinedRdd).show(1); // I commented this
// combinedRdd.collect() // I added this as a test
}
This is the FlatMapData2 class
val FlatMapData2: PairFlatMapFunction[Row, AggregateKey, AggregateValue] = new PairFlatMapFunction[Row, AggregateKey, AggregateValue]() {
//val FlatMapData: PairFlatMapFunction[Row, String, AggregateValue] = new PairFlatMapFunction[Row, String, AggregateValue]() {
override def call(x: Row) = {
val tuples = new util.ArrayList[Tuple2[AggregateKey, AggregateValue]]
val decomposedEvents = decomposer.decomposeDistributed(x)
decomposedEvents.foreach {
y => tuples.add(Tuple2(y._1,y._2))
}
tuples.iterator()
}
}
Here is the aggregate Key class
class AggregateKey(var partitionkeys: Map[Int,Any],var clusteringkeys : Map[Int,Any]) extends Comparable [AggregateKey]{
...
}
I am new to this and any help would be appreciated. Please let me know if anything else needs to be added
I was able to solve this problem by making the AggregateKey extend java.io.Serializable
class AggregateKey(var partitionkeys: Map[Int,Any],var clusteringkeys : Map[Int,Any]) extends java.io.Serializable{
Related
I've created a class containing a function that processes a spark dataframe.
class IsbnEncoder(df: DataFrame) extends Serializable {
def explodeIsbn(): DataFrame = {
val name = df.first().get(0).toString
val year = df.first().get(1).toString
val isbn = df.first().get(2).toString
val isbn_ean = "ISBN-EAN: " + isbn.substring(6, 9)
val isbn_group = "ISBN-GROUP: " + isbn.substring(10, 12)
val isbn_publisher = "ISBN-PUBLISHER: " + isbn.substring(12, 16)
val isbn_title = "ISBN-TITLE: " + isbn.substring(16, 19)
val data = Seq((name, year, isbn_ean),
(name, year, isbn_group),
(name, year, isbn_publisher),
(name, year, isbn_title))
df.union(spark.createDataFrame(data))
}
}
The problem is I don't know how to create a dataframe within the class without creating a new instance of spark = sparksession.builder().appname("isbnencoder").master("local").getorcreate(). This is defined in another class in a separate file that includes this file and uses this class(the one I've included). Obviously, my code is getting errors because the compiler doesn't know what spark is.
You can create a trait that extends from serializable and create spark session as a lazy variable and then through out your project in all the objects that you create, you can extend that trait and it will give you sparksession instance.
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.DataFrame
trait SparkSessionWrapper extends Serializable {
lazy val spark: SparkSession = {
SparkSession.builder().appName("TestApp").getOrCreate()
}
//object with the main method and it extends SparkSessionWrapper
object App extends SparkSessionWrapper {
def main(args: Array[String]): Unit = {
val readdf = ReadFileProcessor.ReadFile("testpath")
readdf.createOrReplaceTempView("TestTable")
val viewdf = spark.sql("Select * from TestTable")
}
}
object ReadFileProcessor extends SparkSessionWrapper{
def ReadFile(path: String) : DataFrame = {
val df = spark.read.format("csv").load(path)
df
}
}
As you are extending the SparkSessionWrapper on both the Objects that you created, spark session would get initialized when first time spark variable is encountered in the code and then you refer it on any object that extends that trait without passing that as a parameter to the method. It works or give you a experience that is similar to notebook.
I have input in json format with two fields, (size : BigInteger and data : String). Here data contains ZStd compressed Avro records. The task is to decode these records. I am using Spark-avro for this. But getting, Task not serializable exception.
Sample Data
{
"data": "7z776qOPevPJF5/0Dv9Rzx/1/i8gJJiQD5MTDGdbeNKKT"
"size" : 231
}
Code
import java.util.Base64
import com.github.luben.zstd.Zstd
import org.apache.avro.Schema
import com.twitter.bijection.Injection
import org.apache.avro.generic.GenericRecord
import com.twitter.bijection.avro.GenericAvroCodecs
import com.databricks.spark.avro.SchemaConverters
import org.apache.spark.sql.types.StructType
import com.databricks.spark.avro.SchemaConverters._
def decode2(input:String,size:Int,avroBijection:Injection[GenericRecord, Array[Byte]], sqlType:StructType): GenericRecord = {
val compressedGenericRecordBytes = Base64.getDecoder.decode(input)
val genericRecordBytes = Zstd.decompress(compressedGenericRecordBytes,size)
avroBijection.invert(genericRecordBytes).get
}
val myRdd = spark.read.format("json").load("/path").rdd
val rows = myRdd.mapPartitions{
lazy val schema = new Schema.Parser().parse(schemaStr)
lazy val avroBijection: Injection[GenericRecord, Array[Byte]] = GenericAvroCodecs.toBinary(schema)
lazy val sqlType = SchemaConverters.toSqlType(schema).dataType.asInstanceOf[StructType]
(iterator) => {
val myList = iterator.toList
myList.map{ x => {
val size = x(1).asInstanceOf[Long].intValue
val data = x(0).asInstanceOf [String]
decode2(data, size, avroBijection,sqlType)
}
}.iterator
}
}
Exception
files: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[987] at rdd at <console>:346
org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:298)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:288)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:108)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2287)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1.apply(RDD.scala:794)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1.apply(RDD.scala:793)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.mapPartitions(RDD.scala:793)
... 112 elided
Caused by: java.io.NotSerializableException: org.apache.avro.generic.GenericDatumReader
Serialization stack:
- object not serializable (class: org.apache.avro.generic.GenericDatumReader, value: org.apache.avro.generic.GenericDatumReader#4937cd88)
- field (class: com.twitter.bijection.avro.BinaryAvroCodec, name: reader, type: interface org.apache.avro.io.DatumReader)
- object (class com.twitter.bijection.avro.BinaryAvroCodec, com.twitter.bijection.avro.BinaryAvroCodec#6945439c)
- field (class: $$$$79b2515edf74bd80cfc9d8ac1ba563c6$$$$iw, name: avroBijection, type: interface com.twitter.bijection.Injection)
Already tried SO posts
Spark: java.io.NotSerializableException: org.apache.avro.Schema$RecordSchema
Following this post I have update the decode2 method to take schemaStr as input and convert to schema and SqlType within method. No change in exception
Use schema to convert AVRO messages with Spark to DataFrame
Used the code provided in the post to create object Injection and then use it. This one also didn't help.
have you tried
val rows = myRdd.mapPartitions{
(iterator) => {
val myList = iterator.toList
myList.map{ x => {
lazy val schema = new Schema.Parser().parse(schemaStr)
lazy val avroBijection: Injection[GenericRecord, Array[Byte]] = GenericAvroCodecs.toBinary(schema)
lazy val sqlType = SchemaConverters.toSqlType(schema).dataType.asInstanceOf[StructType]
val size = x(1).asInstanceOf[Long].intValue
val data = x(0).asInstanceOf [String]
decode2(data, size, avroBijection,sqlType)
}
}.iterator
}
I am facing a strange issue with Scala/Spark (1.5) and Zeppelin:
If I run the following Scala/Spark code, it will run properly:
// TEST NO PROBLEM SERIALIZATION
val rdd = sc.parallelize(Seq(1, 2, 3))
val testList = List[String]("a", "b")
rdd.map{a =>
val aa = testList(0)
None}
However after declaring a custom dataframe type as proposed here
//DATAFRAME EXTENSION
import org.apache.spark.sql.DataFrame
object ExtraDataFrameOperations {
implicit class DFWithExtraOperations(df : DataFrame) {
//drop several columns
def drop(colToDrop:Seq[String]):DataFrame = {
var df_temp = df
colToDrop.foreach{ case (f: String) =>
df_temp = df_temp.drop(f)//can be improved with Spark 2.0
}
df_temp
}
}
}
and using it for example like following:
//READ ALL THE FILES INTO different DF and save into map
import ExtraDataFrameOperations._
val filename = "myInput.csv"
val delimiter = ","
val colToIgnore = Seq("c_9", "c_10")
val inputICFfolder = "hdfs:///group/project/TestSpark/"
val df = sqlContext.read
.format("com.databricks.spark.csv")
.option("header", "true") // Use first line of all files as header
.option("inferSchema", "false") // Automatically infer data types? => no cause we need to merge all df, with potential null values => keep string only
.option("delimiter", delimiter)
.option("charset", "UTF-8")
.load(inputICFfolder + filename)
.drop(colToIgnore)//call the customize dataframe
This run successfully.
Now if I run again the following code (same as above)
// TEST NO PROBLEM SERIALIZATION
val rdd = sc.parallelize(Seq(1, 2, 3))
val testList = List[String]("a", "b")
rdd.map{a =>
val aa = testList(0)
None}
I get the error message:
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[8] at
parallelize at :32 testList: List[String] = List(a, b)
org.apache.spark.SparkException: Task not serializable at
org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)
at
org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)
at
org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2032) at
org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:314)
...
Caused by: java.io.NotSerializableException:
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$ExtraDataFrameOperations$
Serialization stack: - object not serializable (class:
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$ExtraDataFrameOperations$,
value:
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$ExtraDataFrameOperations$#6c7e70e)
- field (class: $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC, name: ExtraDataFrameOperations$module, type: class
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$ExtraDataFrameOperations$)
- object (class $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC, $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC#4c6d0802) - field (class:
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC, name: $iw, type: class
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC)
...
I don't understand:
Why this error occured while no operation on dataframe is performed?
Why "ExtraDataFrameOperations" is not serializable while it was successfully used before??
UPDATE:
Trying with
#inline val testList = List[String]("a", "b")
does not help.
Just add 'extends Serializable'
This work for me
/**
* A wrapper around ProducerRecord RDD that allows to save RDD to Kafka.
*
* KafkaProducer is shared within all threads in one executor.
* Error handling strategy - remember "last" seen exception and rethrow it to allow task fail.
*/
implicit class DatasetKafkaSink(ds: Dataset[ProducerRecord[String, GenericRecord]]) extends Serializable {
class ExceptionRegisteringCallback extends Callback {
private[this] val lastRegisteredException = new AtomicReference[Option[Exception]](None)
override def onCompletion(metadata: RecordMetadata, exception: Exception): Unit = {
Option(exception) match {
case a # Some(_) => lastRegisteredException.set(a) // (re)-register exception if send failed
case _ => // do nothing if encountered successful send
}
}
def rethrowException(): Unit = lastRegisteredException.getAndSet(None).foreach(e => throw e)
}
/**
* Save to Kafka reusing KafkaProducer from singleton holder.
* Returns back control only once all records were actually sent to Kafka, in case of error rethrows "last" seen
* exception in the same thread to allow Spark task to fail
*/
def saveToKafka(kafkaProducerConfigs: Map[String, AnyRef]): Unit = {
ds.foreachPartition { records =>
val callback = new ExceptionRegisteringCallback
val producer = KafkaProducerHolder.getInstance(kafkaProducerConfigs)
records.foreach(record => producer.send(record, callback))
producer.flush()
callback.rethrowException()
}
}
}'
It looks like spark tries to serialize all the scope around testList.
Try to inline data #inline val testList = List[String]("a", "b") or use different object where you store function/data which you pass to drivers.
The following class contains the main function which tries to read from Elasticsearch and prints the documents returned:
object TopicApp extends Serializable {
def run() {
val start = System.currentTimeMillis()
val sparkConf = new Configuration()
sparkConf.set("spark.executor.memory","1g")
sparkConf.set("spark.kryoserializer.buffer","256")
val es = new EsContext(sparkConf)
val esConf = new Configuration()
esConf.set("es.nodes","localhost")
esConf.set("es.port","9200")
esConf.set("es.resource", "temp_index/some_doc")
esConf.set("es.query", "?q=*:*")
esConf.set("es.fields", "_score,_id")
val documents = es.documents(esConf)
documents.foreach(println)
val end = System.currentTimeMillis()
println("Total time: " + (end-start) + " ms")
es.shutdown()
}
def main(args: Array[String]) {
run()
}
}
Following class converts the returned document to JSON using org.json4s
class EsContext(sparkConf:HadoopConfig) extends SparkBase {
private val sc = createSCLocal("ElasticContext", sparkConf)
def documentsAsJson(esConf:HadoopConfig):RDD[String] = {
implicit val formats = DefaultFormats
val source = sc.newAPIHadoopRDD(
esConf,
classOf[EsInputFormat[Text, MapWritable]],
classOf[Text],
classOf[MapWritable]
)
val docs = source.map(
hit => {
val doc = Map("ident" -> hit._1.toString) ++ mwToMap(hit._2)
write(doc)
}
)
docs
}
def shutdown() = sc.stop()
// mwToMap() converts MapWritable to Map
}
Following class creates the local SparkContext for the application:
trait SparkBase extends Serializable {
protected def createSCLocal(name:String, config:HadoopConfig):SparkContext = {
val iterator = config.iterator()
for (prop <- iterator) {
val k = prop.getKey
val v = prop.getValue
if (k.startsWith("spark."))
System.setProperty(k, v)
}
val runtime = Runtime.getRuntime
runtime.gc()
val conf = new SparkConf()
conf.setMaster("local[2]")
conf.setAppName(name)
conf.set("spark.serializer", classOf[KryoSerializer].getName)
conf.set("spark.ui.port", "0")
new SparkContext(conf)
}
}
When I run TopicApp I get the following errors:
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2055)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:324)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:323)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.map(RDD.scala:323)
at TopicApp.EsContext.documents(EsContext.scala:51)
at TopicApp.TopicApp$.run(TopicApp.scala:28)
at TopicApp.TopicApp$.main(TopicApp.scala:39)
at TopicApp.TopicApp.main(TopicApp.scala)
Caused by: java.io.NotSerializableException: org.apache.spark.SparkContext
Serialization stack:
- object not serializable (class: org.apache.spark.SparkContext, value: org.apache.spark.SparkContext#14f70e7d)
- field (class: TopicApp.EsContext, name: sc, type: class org.apache.spark.SparkContext)
- object (class TopicApp.EsContext, TopicApp.EsContext#2cf77cdc)
- field (class: TopicApp.EsContext$$anonfun$documents$1, name: $outer, type: class TopicApp.EsContext)
- object (class TopicApp.EsContext$$anonfun$documents$1, <function1>)
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:301)
... 13 more
Going through other posts that cover similar issue there were mostly recommending making the classes Serializable or try to separate the non-serializable objects from the classes.
From the error that I got I inferred that SparkContext i.e. sc is non-serializable as SparkContext is not a serializable class.
How should I decouple SparkContext, so that the applications runs correctly?
I can't run your program to be sure, but the general rule is not to create anonymous functions that refer to members of unserializable classes if they have to be executed on the RDD's data. In your case:
EsContext has a val of type SparkContext, which is (intentionally) not serializable
In the anonymous function passed to RDD.map in EsContext.documentsAsJson, you call another function of this EsContext instance (mwToMap) which forces Spark to serialize that instance, along with the SparkContext it holds
One possible solution would be removing mwToMap from the EsContext class (possibly into a companion object of EsContext - objects need not be serializable as they are static). If there are other methods of the same nature (write?) they'll have to be moved too. This would look something like:
import EsContext._
class EsContext(sparkConf:HadoopConfig) extends SparkBase {
private val sc = createSCLocal("ElasticContext", sparkConf)
def documentsAsJson(esConf: HadoopConfig): RDD[String] = { /* unchanged */ }
def documents(esConf: HadoopConfig): RDD[EsDocument] = { /* unchanged */ }
def shutdown() = sc.stop()
}
object EsContext {
private def mwToMap(mw: MapWritable): Map[String, String] = { ... }
}
If moving these methods out isn't possible (i.e. if they require some of EsContext's members) - then consider separating the class that does the actual mapping from this context (which seems to be some kind of wrapper around the SparkContext - if that's what it is, that's all that it should be).
I am using Spark 1.5.
I run the following code and get exception java.lang.ExceptionInInitializerError
def work() = {
val rdd1:RDD[String] = read_rdd()
val map:Map[String,Boolean] = read_a_map()
object brx extends Serializable { val value = map }
def filter(rdd:RDD[String]) = {
rdd filter brx.value.apply //throws exception
}
def filter2(rdd:RDD[String]) = {
rdd filter map //works fine
}
val x = filter(rdd1) //throws exception
val x = filter2(rdd1) // works fine
}
Why I got java.lang.ExceptionInInitializerError?