I would like to run a multivariate mixed regression MCMC model with two response (independent) variables, namely Boldness scores (continuous variable) and Aggression ranks (ordinal ranks). Trial numbers (integers) are the fixed effect while individual ID is the random effect. I'm using a mixed model approach to partition between-individual co-variance from within-individual co-variance. I would much appreciate if someone lets me know how to do this, and which package to use, preferably in R and what priors to specify. Thank you very much in advance!
Related
I am struggling in understanding why the matlab function fitcenseble doesn't allow to create an ensemble model using knn learners with bagging, but only with the random subspace method, which is more similar to the random forest one.
I would like to use bagging in order to compare the bagging method using different types of learners (e.g., knn and trees).
I hope you will help me, thank you in advance,
Marta
Bagging is rarely used in conjunction with k-nn classifiers, as the decision surfaces are typically too stable and any multiples of datapoints in the bootstrap sample do not shift the 'weight' like in many other models. Paraphrasing (1):
The probability that any single datapoint appears at least once in a bootstrap sample is ~0.632. Consider a simple 2-class 1-NN classifier bagged with N bootstrap samples. A test datapoint can change classification only if its nearest neighbours in the learning set is not in at least half of the N bootstrap samples. The probability for this to occur is the same as the probability of flipping a weighted coin with a 0.632 probability for heads N times and getting less than 0.5N heads. As N gets larger this probability gets smaller and smaller. Similiar logic holds for multiclass problems and k-NN.
If you want to create your own bagging models you can do it with bootstrp. bootstrp() can be called without a function by calling:
[~, BootIndices] = bootstrap(N, [], Data);
BootSample = Data(BootIndices);
(1) Breiman, Leo. "Bagging predictors." Machine learning 24.2 (1996):
123-140. Chapter 6.4.
I was reading through all (or most) previously asked questions, but couldn't find an answer to my problem...
I have 13 variables measured on an ordinal scale (thy represent knowledge transfer channels), which I want to cluster (HCA) for a following binary logistic regression analysis (including all 13 variables is not possible due to sample size of N=208). A Factor Analysis seems inappropriate due to the scale level. I am using SPSS (but tried R as well).
Questions:
1: Am I right in using the Chi-Squared measure for count data instead of the (squared) euclidian distance?
2. How can I justify a choice of method? I tried single, complete, Ward and average, but all give different results and I can't find a source to base my decision on.
Thanks a lot in advance!
Answer 1: Since the variables are on ordinal scale, the chi-square test is an appropriate measurement test. Because, "A Chi-square test is designed to analyze categorical data. That means that the data has been counted and divided into categories. It will not work with parametric or continuous data (such as height in inches)." Reference.
Again, ordinal scaled data is essentially count or frequency data you can use regular parametric statistics: mean, standard deviation, etc Or non-parametric tests like ANOVA or Mann-Whitney U test to compare 2 groups or Kruskal–Wallis H test to compare three or more groups.
Answer 2: In a clustering problem, the choice of distance method solely depends upon the type of variables. I recommend you to read these detailed posts 1, 2,3
I am trying to extract common patterns that always appear whenever a certain event occurs.
For example, patient A, B, and C all had a heart attack. Using the readings from there pulse, I want to find the common patterns before the heart attack stroke.
In the next stage I want to do this using multiple dimensions. For example, using the readings from the patients pulse, temperature, and blood pressure, what are the common patterns that occurred in the three dimensions taking into consideration the time and order between each dimension.
What is the best way to solve this problem using Neural Networks and which type of network is best?
(Just need some pointing in the right direction)
and thank you all for reading
Described problem looks like a time series prediction problem. That means a basic prediction problem for a continuous or discrete phenomena generated by some existing process. As a raw data for this problem we will have a sequence of samples x(t), x(t+1), x(t+2), ..., where x() means an output of considered process and t means some arbitrary timepoint.
For artificial neural networks solution we will consider a time series prediction, where we will organize our raw data to a new sequences. As you should know, we consider X as a matrix of input vectors that will be used in ANN learning. For time series prediction we will construct a new collection on following schema.
In the most basic form your input vector x will be a sequence of samples (x(t-k), x(t-k+1), ..., x(t-1), x(t)) taken at some arbitrary timepoint t, appended to it predecessor samples from timepoints t-k, t-k+1, ..., t-1. You should generate every example for every possible timepoint t like this.
But the key is to preprocess data so that we get the best prediction results.
Assuming your data (phenomena) is continuous, you should consider to apply some sampling technique. You could start with an experiment for some naive sampling period Δt, but there are stronger methods. See for example Nyquist–Shannon Sampling Theorem, where the key idea is to allow to recover continuous x(t) from discrete x(Δt) samples. This is reasonable when we consider that we probably expect our ANNs to do this.
Assuming your data is discrete... you still should need to try sampling, as this will speed up your computations and might possibly provide better generalization. But the key advice is: do experiments! as the best architecture depends on data and also will require to preprocess them correctly.
The next thing is network output layer. From your question, it appears that this will be a binary class prediction. But maybe a wider prediction vector is worth considering? How about to predict the future of considered samples, that is x(t+1), x(t+2) and experiment with different horizons (length of the future)?
Further reading:
Somebody mentioned Python here. Here is some good tutorial on timeseries prediction with Keras: Victor Schmidt, Keras recurrent tutorial, Deep Learning Tutorials
This paper is good if you need some real example: Fessant, Francoise, Samy Bengio, and Daniel Collobert. "On the prediction of solar activity using different neural network models." Annales Geophysicae. Vol. 14. No. 1. 1996.
Is it possible to train classifiers in sklearn with a cost matrix with different costs for different mistakes? For example in a 2 class problem, the cost matrix would be a 2 by 2 square matrix. For example A_ij = cost of classifying i as j.
The main classifier I am using is a Random Forest.
Thanks.
The cost-sensitive framework you describe is not supported in scikit-learn, in any of the classifiers we have.
You could use a custom scoring function that accepts a matrix of per-class or per-instance costs. Here's an example of a scorer that calculates per-instance misclassification cost:
def financial_loss_scorer(y, y_pred, **kwargs):
import pandas as pd
totals = kwargs['totals']
# Create an indicator - 0 if correct, 1 otherwise
errors = pd.DataFrame((~(y == y_pred)).astype(int).rename('Result'))
# Use the product totals dataset to create results
results = errors.merge(totals, left_index=True, right_index=True, how='inner')
# Calculate per-prediction loss
loss = results.Result * results.SumNetAmount
return loss.sum()
The scorer becomes:
make_scorer(financial_loss_scorer, totals=totals_data, greater_is_better=False)
Where totals_data is a pandas.DataFrame with indexes that match the training set indexes.
You could always just look at your ROC curve. Each point on the ROC curve corresponds to a separate confusion matrix. So by specifying the confusion matrix you want, via choosing your classifier threshold implies some sort of cost weighting scheme. Then you just have to choose the confusion matrix that would imply the cost matrix you are looking for.
On the other hand if you really had your heart set on it, and really want to "train" an algorithm using a cost matrix, you could "sort of" do it in sklearn.
Although it is impossible to directly train an algorithm to be cost sensitive in sklearn you could use a cost matrix sort of setup to tune your hyper-parameters. I've done something similar to this using a genetic algorithm. It really doesn't do a great job, but it should give a modest boost to performance.
One way to circumvent this limitation is to use under or oversampling. E.g., if you are doing binary classification with an imbalanced dataset, and want to make errors on the minority class more costly, you could oversample it. You may want to have a look at imbalanced-learn which is a package from scikit-learn-contrib.
May not be direct to your question (since you are asking about Random Forest).
But for SVM (in Sklearn), you can utilize the class_weight parameter to specify the weights of different classes. Essentially, you will pass in a dictionary.
You might want to refer to this page to see an example of using class_weight.
I am trying to differentiate two populations. Each population is an NxM matrix in which N is fixed between the two and M is variable in length (N=column specific attributes of each run, M=run number). I have looked at PCA and K-means for differentiating the two, but I was curious of the best practice.
To my knowledge, in K-means, there is no initial 'calibration' in which the clusters are chosen such that known bimodal populations can be differentiated. It simply minimizes the distance and assigns the data to an arbitrary number of populations. I would like to tell the clustering algorithm that I want the best fit in which the two populations are separated. I can then use the fit I get from the initial clustering on future datasets. Any help, example code, or reading material would be appreciated.
-R
K-means and PCA are typically used in unsupervised learning problems, i.e. problems where you have a single batch of data and want to find some easier way to describe it. In principle, you could run K-means (with K=2) on your data, and then evaluate the degree to which your two classes of data match up with the data clusters found by this algorithm (note: you may want multiple starts).
It sounds to like you have a supervised learning problem: you have a training data set which has already been partitioned into two classes. In this case k-nearest neighbors (as mentioned by #amas) is probably the approach most like k-means; however Support Vector Machines can also be an attractive approach.
I frequently refer to The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics) by Trevor Hastie (Author), Robert Tibshirani (Author), Jerome Friedman (Author).
It really depends on the data. But just to let you know K-means does get stuck at local minima so if you wanna use it try running it from different random starting points. PCA's might also be useful how ever like any other spectral clustering method you have much less control over the clustering procedure. I recommend that you cluster the data using k-means with multiple random starting points and c how it works then you can predict and learn for each the new samples with K-NN (I don't know if it is useful for your case).
Check Lazy learners and K-NN for prediction.