Clarification on back propagation - neural-network

As I usually do when isolated at home for too long, I was thinking about back-propagation.
If my thought process is correct, for computing the weights update we never actually need to compute the cost. We only ever need to compute the derivative of the cost.
Is this correct?
I imagine that the only reason to compute the Cost would be to check if the network is actually learning.
I really believe I am correct, but by checking on the internet no one seems to make this observation. So maybe I am wrong. If I am, I have a deep misunderstanding of backpropagation that I need to fix.

You are correct.
The cost function is what tells you how much the solution costs. The gradient is what carries the information about how to make it cost less.
You could shift the cost with any constant addition or subtraction and it wouldn't make a difference, because there is no way to make that part of the cost go down.

Yes. Back propagation (auto-differentiation) needs gradients, not the loss. Once the forward path is formulated, then all we need to formulate the gradients are available.
Another justification is that the back propagation formula is the chain rule in which there is no loss value.
I really believe I am correct, but by checking on the internet no one seems to make this observation.
Indeed. NN articles or textbook always talk about Loss but not clear that all we need for back-propagation are gradients in the chain rule by which we can do gradient descents.

Related

Confusion in Backpropagation

I've started working on Forward and back propagation of neural networks. I've coded it as-well and works properly too. But i'm confused in the algorithm itself. I'm new to Neural Networks.
So Forward propagation of neural networks is finding the right label with the given weights?
and Back-propagation is using forward propagation to find the most error free parameters by minimizing cost function and using these parameters to help classify other training examples? And this is called a trained Neural Network?
I feel like there is a big blunder in my concept if there is please let me know where i'm wrong and why i am wrong.
I will try my best to explain forward and back propagation in a detailed yet simple to understand manner, although it's not an easy topic to do.
Forward Propagation
Forward propagation is the process in a neural network where-by during the runtime of the network, values are fed into the front of the neural network, (the inputs). You can imagine that these values then travel across the weights which multiply the original value from the inputs by themselves. They then arrive at the hidden layer (neurons). Neurons vary quite a lot based on different types of networks, but here is one way of explaining it. When the values reach the neuron they go through a function where every single value being fed into the neuron is summed up and then fed into an activation function. This activation function can be very different depending on the use-case but let's take for example a linear activation function. It essentially gets the value being fed into it and then it rounds it to a 0 or 1. It is then fed through more weights and then it is spat out into the outputs. Which is the last step into the network.
You can imagine this network with this diagram.
Back Propagation
Back propagation is just like forward propagation except we work backwards from where we were in forward propagation.
The aim of back propagation is to reduce the error in the training phase (trying to get the neural network as accurate as possible). The way this is done is by going backwards through the weights and layers. At each weight the error is calculated and each weight is individually adjusted using an optimization algorithm; optimization algorithm is exactly what it sounds like. It optimizes the weights and adjusts their values to make the neural network more accurate.
Some optimization algorithms include gradient descent and stochastic gradient descent. I will not go through the details in this answer as I have already explained them in some of my other answers (linked below).
The process of calculating the error in the weights and adjusting them accordingly is the back-propagation process and it is usually repeated many times to get the network as accurate as possible. The number of times you do this is called the epoch count. It is good to learn the importance of how you should manage epochs and batch sizes (another topic), as these can severely impact the efficiency and accuracy of your network.
I understand that this answer may be hard to follow, but unfortunately this is the best way I can explain this. It is expected that you might not understand this the first time you read it, but remember this is a complicated topic. I have a linked a few more resources down below including a video (not mine) that explains these processes even better than a simple text explanation can. But I also hope my answer may have resolved your question and have a good day!
Further resources:
Link 1 - Detailed explanation of back-propagation.
Link 2 - Detailed explanation of stochastic/gradient-descent.
Youtube Video 1 - Detailed explanation of types of propagation.
Credits go to Sebastian Lague

What exactly is gradient checking?

I am a beginner in Deep Learning. I came through the concept of 'Gradient Checking'.
I just want to know, what is it and how it could help to improve the training process?
Why do we need Gradient Checking?
Back prop as an algorithm has a lot of details and can be a little bit tricky to implement. And one unfortunate property is that there are many ways to have subtle bugs in back prop. So that if you run it with gradient descent or some other optimizational algorithm, it could actually look like it's working. And your cost function, J of theta may end up decreasing on every iteration of gradient descent. But this could prove true even though there might be some bug in your implementation of back prop. So that it looks J of theta is decreasing, but you might just wind up with a neural network that has a higher level of error than you would with a bug free implementation. And you might just not know that there was this subtle bug that was giving you worse performance. So, what can we do about this? There's an idea called gradient checking that eliminates almost all of these problems.
What is Gradient Checking?
We describe a method for numerically checking the derivatives computed by your code to make sure that your implementation is correct. Carrying out the derivative checking procedure significantly increase your confidence in the correctness of your code.
If I have to say in short than Gradient Checking is kind of debugging your back prop algorithm. Gradient Checking basically carry out the derivative checking procedure.
How to implement Gradient Checking?
You can find this procedure here.

Neural Networks back propogation

I have gone through neural networks and have understood the derivation for back propagation almost perfectly(finally!). However, I had a small doubt.
We are updating all the weights simultaneously, so what is the guarantee that they lead to a smaller cost. If the weights are updated one by one, it would definitely lead to a lesser cost and it would be similar to linear regression. But if you update all the weights simultaneously, might we not cross the minima?
Also, do we update the biases like we update the weights after each forward propagation and back propagation of each test case?
Lastly, I have started reading on RNN's. What are some good resources to understand BPTT in RNN's?
Yes, updating only one weight at the time could result in decreasing error value every time but it's usually infeasible to do such updates in practical solutions using NN. Most of today's architectures usually have ~ 10^6 parameters so one epoch for every parameter could last enormously long. Moreover - because of nature of backpropagation - you usually have to compute loads of different derivatives in order to compute derivative with respect to a parameter given - so you will waste a lot of computations when using such approach.
But the phenomenon which you mention has been noticed a long time ago and there are some ways in dealing with it. There are two most common issues connected with it:
Covariance shift: it's when error and weight updates of a layer given strongly depends on output from previous layer, so when you update it - the results in the next layer might be different. The most common way to deal with this problem right now is Batch normalization.
Nolinear function vs Linear Differentation: it's quite uncommon when you think about BP but derivative is a linear operator which might generate a lot of problems in gradient descent. The most countintuitive example is the fact that if you multiply your input by a constant then every derivative will also be multiplied by the same number. This may lead to a lot of problems but most of recent methods of learning do a great job in dealing with it.
About BPTT I stronly recomend you Geoffrey Hinton course about ANN and especially this video.

Alternatives to FMINCON

Are there any faster and more efficient solvers other than fmincon? I'm using fmincon for a specific problem and I run out of memory for modest sized vector variable. I don't have any supercomputers or cloud computing options at my disposal, either. I know that any alternate solution will still run out of memory but I'm just trying to see where the problem is.
P.S. I don't want a solution that would change the way I'm approaching the actual problem. I know convex optimization is the way to go and I have already done enough work to get up until here.
P.P.S I saw the other question regarding the open source alternatives. That's not what I'm looking for. I'm looking for more efficient ones, if someone faced the same problem adn shifted to a better solver.
Hmmm...
Without further information, I'd guess that fmincon runs out of memory because it needs the Hessian (which, given that your decision variable is 10^4, will be 10^4 x numel(f(x1,x2,x3,....)) large).
It also takes a lot of time to determine the values of the Hessian, because fmincon normally uses finite differences for that if you don't specify derivatives explicitly.
There's a couple of things you can do to speed things up here.
If you know beforehand that there will be a lot of zeros in your Hessian, you can pass sparsity patterns of the Hessian matrix via HessPattern. This saves a lot of memory and computation time.
If it is fairly easy to come up with explicit formulae for the Hessian of your objective function, create a function that computes the Hessian and pass it on to fmincon via the HessFcn option in optimset.
The same holds for the gradients. The GradConstr (for your non-linear constraint functions) and/or GradObj (for your objective function) apply here.
There's probably a few options I forgot here, that could also help you. Just go through all the options in the optimization toolbox' optimset and see if they could help you.
If all this doesn't help, you'll really have to switch optimizers. Given that fmincon is the pride and joy of MATLAB's optimization toolbox, there really isn't anything much better readily available, and you'll have to search elsewhere.
TOMLAB is a very good commercial solution for MATLAB. If you don't mind going to C or C++...There's SNOPT (which is what TOMLAB/SNOPT is based on). And there's a bunch of things you could try in the GSL (although I haven't seen anything quite as advanced as SNOPT in there...).
I don't know on what version of MATLAB you have, but I know for a fact that in R2009b (and possibly also later), fmincon has a few real weaknesses for certain types of problems. I know this very well, because I once lost a very prestigious competition (the GTOC) because of it. Our approach turned out to be exactly the same as that of the winners, except that they had access to SNOPT which made their few-million variable optimization problem converge in a couple of iterations, whereas fmincon could not be brought to converge at all, whatever we tried (and trust me, WE TRIED). To this day I still don't know exactly why this happens, but I verified it myself when I had access to SNOPT. Once, when I have an infinite amount of time, I'll find this out and report this to the MathWorks. But until then...I lost a bit of trust in fmincon :)

What's a genetic algorithm that would produce interesting/surprising results and not have a boring/obvious end point?

I find genetic algorithm simulations like this to be incredibly entrancing and I think it'd be fun to make my own. But the problem with most simulations like this is that they're usually just hill climbing to a predictable ideal result that could have been crafted with human guidance pretty easily. An interesting simulation would have countless different solutions that would be significantly different from each other and surprising to the human observing them.
So how would I go about trying to create something like that? Is it even reasonable to expect to achieve what I'm describing? Are there any "standard" simulations (in the sense that the game of life is sort of standardized) that I could draw inspiration from?
Depends on what you mean by interesting. That's a pretty subjective term. I once programmed a graph analyzer for fun. The program would first let you plot any f(x) of your choice and set the bounds. The second step was creating a tree holding the most common binary operators (+-*/) in a random generated function of x. The program would create a pool of such random functions, test how well they fit to the original curve in question, then crossbreed and mutate some of the functions in the pool.
The results were quite cool. A totally weird function would often be a pretty good approximation to the query function. Perhaps not the most useful program, but fun nonetheless.
Well, for starters that genetic algorithm is not doing hill-climbing, otherwise it would get stuck at the first local maxima/minima.
Also, how can you say it doesn't produce surprising results? Look at this vehicle here for example produced around generation 7 for one of the runs I tried. It's a very old model of a bicycle. How can you say that's not a surprising result when it took humans millennia to come up with the same model?
To get interesting emergent behavior (that is unpredictable yet useful) it is probably necessary to give the genetic algorithm an interesting task to learn and not just a simple optimisation problem.
For instance, the Car Builder that you referred to (although quite nice in itself) is just using a fixed road as the fitness function. This makes it easy for the genetic algorithm to find an optimal solution, however if the road would change slightly, that optimal solution may not work anymore because the fitness of a solution may have grown dependent on trivially small details in the landscape and not be robust to changes to it. In real, cars did not evolve on one fixed test road either but on many different roads and terrains. Using an ever changing road as the (dynamic) fitness function, generated by random factors but within certain realistic boundaries for slopes etc. would be a more realistic and useful fitness function.
I think EvoLisa is a GA that produces interesting results. In one sense, the output is predictable, as you are trying to match a known image. On the other hand, the details of the output are pretty cool.