I'm trying to add a next var to an enum. I am able to do so for a specific enum but would like to extend it generically so that I can obtain the 'next' enum case from an enum value just by specifying an enum with a protocol, ex CaseNextIterable
enum MyEnum: CaseIterable { // 'next' here is possible thanks to 'CaseIterable' protocol
case a, b, c
// returns the next case, or first if at end of sequence
// ie. a.next == b, c.next == a
var next: Self {
var r: Self!
for c in Self.allCases + Self.allCases { // not efficient
if r != nil {
r = c
break
}
if c == self {
r = self
}
}
return r
}
}
You can extend CaseIterable constraining Self to Equatable. Then you just need to find the index after the firstIndex of your CaseItareble enumeration and return the element at that position. If the index is equal to the endIndex of all cases just return the first element.
extension CaseIterable where Self: Equatable {
private var allCases: AllCases { Self.allCases }
var next: Self {
let index = allCases.index(after: allCases.firstIndex(of: self)!)
guard index != allCases.endIndex else { return allCases.first! }
return allCases[index]
}
}
Another option is to constrain AllCases to BidirectionalCollection. This will allow you to get the last element of you enumeration, check if it is equal to self and return the first element without the need to iterate your whole collection:
extension CaseIterable where Self: Equatable, AllCases: BidirectionalCollection {
var allCases: AllCases { Self.allCases }
var next: Self {
guard allCases.last != self else { return allCases.first! }
return allCases[allCases.index(after: allCases.firstIndex(of: self)!)]
}
}
expanding on CaseIterable next and previous properties:
extension CaseIterable {
typealias Index = AllCases.Index
var first: Self { allCases.first! }
private var allCases: AllCases { Self.allCases }
private static func index(after i: Index) -> Index { allCases.index(after: i) }
}
extension CaseIterable where AllCases: BidirectionalCollection {
var last: Self { allCases.last! }
private static func index(before i: Index) -> Index { allCases.index(before: i) }
}
extension CaseIterable where Self: Equatable {
var index: Index { Self.firstIndex(of: self) }
private static func firstIndex(of element: Self) -> Index { allCases.firstIndex(of: element)! }
}
extension CaseIterable where Self: Equatable, AllCases: BidirectionalCollection {
var previous: Self { first == self ? last : allCases[Self.index(before: index)] }
var next: Self { last == self ? first : allCases[Self.index(after: index)] }
}
Playground testing;
enum Enum: CaseIterable {
case a,b,c
}
let value: Enum = .c
let next = value.next // a
let next2 = next.next // b
let next3 = next2.next // c
let previous = value.previous // b
let previous2 = previous.previous // a
let previous3 = previous2.previous // c
I'm adding this in complement of Leo Dabus' answer, in case people would need the previous extension too.
edit:
I added both next and previous.
The main difference is in the behavior expected.
For out of band:
this solution returns nul
Leo Dabus' solution works like a chained list
extension CaseIterable where Self: Equatable {
var allCases: AllCases { Self.allCases }
/// Using `next` on an empty enum of on the last element returns `nil`
var next: Self? {
guard let currentIndex = allCases.firstIndex(of: self) else { return nil }
let index = allCases.index(after: currentIndex)
// ensure we don't go past the last element
guard index != allCases.endIndex else { return nil }
return allCases[index]
}
var previous: Self? {
guard let currentIndex = allCases.firstIndex(of: self) else { return nil }
// ensure we don't go before the first element
guard currentIndex != allCases.startIndex else { return nil }
let index = allCases.index(currentIndex, offsetBy: -1)
return allCases[index]
}
}
Related
I have some generic code that allows me to read and write various types to the defaults system, e.g. value getters and setters:
var value : T {
get {
if T.self == Int.self {
return UserDefaults.standard.integer(forKey: storageKey) as! T
} else if T.self == Double.self {
return UserDefaults.standard.double(forKey: storageKey) as! T
} else if T.self == Float.self {
return UserDefaults.standard.float(forKey: storageKey) as! T
} else if T.self == Bool.self {
return UserDefaults.standard.bool(forKey: storageKey) as! T
} else if T.self == String.self {
return UserDefaults.standard.string(forKey: storageKey) as! T
} else {
return UserDefaults.standard.value(forKey: self.storageKey) as! T
}
}
set(value) {
UserDefaults.standard.set(value, forKey: storageKey)
UserDefaults.standard.synchronize()
}
}
Now I want to add my own enum types to this mechanism by making them RawRepresentable<Int>, e.g.
enum Direction : Int, RawRepresentable {
case left = 0
case right = 1
}
Unfortunately, I can neither find the magic incantation to test whether T conforms to the RawRepresentable protocol, nor can I cast T to the RawRepresentable protocol, because no matter what I try, I always end up with a Protocol 'RawRepresentable' can only be used as a generic constraint because it has Self or associated type requirements.
I have tried every where and as incantation until I have started doubting that it can be done at all!?
I'm in Swift 5 and the goal is to create new instance by invoking CustomType(rawValue:) and getting the Int value by calling myValue.rawValue.
As #vadian said, all those type checks can be replaced be a single call to UserDefaults.standard.object() and conditional casting. Also the type of the value property needs to be an optional to handle the case where the property is not set (or not of the correct type):
struct DefaultKey<T> {
let storageKey: String
var value: T? {
get {
return UserDefaults.standard.object(forKey: storageKey) as? T
}
nonmutating set {
UserDefaults.standard.set(newValue, forKey: storageKey)
}
}
}
And then you can define a constrained extension method where you specialize the computed property for the case of RawRepresentable types:
extension DefaultKey where T: RawRepresentable {
var value: T? {
get {
if let rawValue = UserDefaults.standard.object(forKey: storageKey) as? T.RawValue {
return T(rawValue: rawValue)
}
return nil
}
nonmutating set {
UserDefaults.standard.set(newValue?.rawValue, forKey: storageKey)
}
}
}
Example usage:
enum Direction : Int {
case left = 0
case right = 1
}
let key1 = DefaultKey<Int>(storageKey: "foo")
key1.value = 123
let key2 = DefaultKey<Direction>(storageKey: "bar")
key2.value = .right
print(key1.value as Any) // Optional(123)
print(key2.value as Any) // Optional(Direction.right)
Note that this can still crash if used with non-property-list types. To be on the safe side, you would have to restrict the extensions to types which are known to be user defaults storable (integers, floats, strings, ...):
protocol UserDefaultsStorable {}
extension Int: UserDefaultsStorable {}
extension Float: UserDefaultsStorable {}
// ...
struct DefaultKey<T> {
let storageKey: String
}
extension DefaultKey where T: UserDefaultsStorable { .. }
extension DefaultKey where T: RawRepresentable, T.RawValue: UserDefaultsStorable { ... }
I am trying to convert a 2d array of Strings into my custom generic type Matrix:
func convert(_ arr: [[String]]) -> Matrix<Element> {
var m: Matrix<Element> = Matrix()
for row in arr {
var v: [Element] = []
for e in row {
let convE: Element = Element(string: e) // right here I'd like to implement something like that: Element(string: e)
v.append(convE)
}
m.vectors.append(Vector(v))
}
return m
}
The Matrix.Element does conform to the FloatingPoint protocol. Please tell me if you wish to see the Matrix struct but I think I haven't implemented anything that's important for this question other than that the generic Element type of Matrix does conform to the FloatingPoint protocol.
My problem is I want Element to be something like Float, Double... (any of the FloatingPoint types) but how can I initialize a FloatingPoint from a string? I tried:
extension FloatingPoint {
init(string: String) {
self.init(Int(string)!)
}
}
which obviously only works for strings like "1", "2"... and not "1.2", "3.541" and so on which I want.
Edit:(#Leo Dabus)
protocol DArray: Sequence {
associatedtype Component: FloatingPoint
}
extension DArray {
static func * <T: DArray>(lhs: Self, rhs: T) -> Vector<Component> {
let v = lhs as? Vector<Component> ?? rhs as! Vector<Component>
let m = lhs as? Matrix<Component> ?? rhs as! Matrix<Component>
return Vector(m.map { zip(v, $0).map(*).reduce(0, +) })
}
static func / <T: DArray>(lhs: Self, rhs: T) -> Vector<Component> {
let v = lhs as? Vector<Component> ?? lhs as! Vector<Component>
let m = lhs as? Matrix<Component> ?? lhs as! Matrix<Component>
return Vector(m.map { zip(v, $0).map(/).reduce(0, +) })
}
}
struct Vector<Component: FloatingPoint>: DArray {
var components: [Component]
var count: Int {
return components.count
}
init(_ Components: [Component] = []) {
self.components = Components
}
subscript(i: Int) -> Component {
get {
return components[i]
} set {
components[i] = newValue
}
}
static func + (lhs: Self, rhs: Self) -> Self {
return Vector(zip(lhs, rhs).map(+))
}
static func - (lhs: Self, rhs: Self) -> Self {
return Vector(zip(lhs, rhs).map(-))
}
static func * (lhs: Self, rhs: Self) -> Self {
return Vector(zip(lhs, rhs).map(*))
}
static func / (lhs: Self, rhs: Self) -> Self {
return Vector(zip(lhs, rhs).map(/))
}
func empty(of length: Int) -> Self {
return Vector(Array(repeating: 0, count: length))
}
}
struct Matrix<Component: FloatingPoint>: DArray {
var vectors: [Vector<Component>]
var nRows: Int {
return vectors.count
}
var nColumns: Int {
guard !vectors.isEmpty else { return 0 }
return vectors[0].count
}
var count: Int {
return vectors.count
}
init(_ vectors: [Vector<Component>] = []) {
self.vectors = vectors
}
subscript(r: Int) -> Vector<Component> {
get {
return vectors[r]
}
set {
vectors[r] = newValue
}
}
subscript(r: Int, c: Int) -> Component {
get {
return vectors[r][c]
}
set {
vectors[r][c] = newValue
}
}
}
Additionally I have my two structs conform to the Sequence protocol.
(Note: I am the OP)
What I came up with now is:
extension FloatingPoint {
public init?(string: String) {
if Self.self == Double.self {
self = Double(string) as! Self
} else if Self.self == Float.self {
self = Float(string) as! Self
} else if Self.self == Float80.self {
self = Float80(string) as! Self
} else {
return nil
}
}
}
It works for my use case but I was wondering whether it is a good way of achieving what I am looking for. So I'd be happy for someone to evaluate my solution. (#Leo Dabus)
You can extend FloatingPoint protocol and constrain the generic type to LosslessStringConvertible:
extension StringProtocol {
func floatingPoint<T: FloatingPoint>() -> T? where T: LosslessStringConvertible {
T(String(self))
}
}
Note that CGFloat does NOT conform to LosslessStringConvertible so you would need to implement a custom String initializer:
extension CGFloat: LosslessStringConvertible {
private static let formatter = NumberFormatter()
public init?(_ description: String) {
guard let number = CGFloat.formatter.number(from: description) as? CGFloat else { return nil }
self = number
}
}
let double: Double? = "2.7".floatingPoint() // 2.7
let float: Float? = "2.7".floatingPoint() // 2.7
let float80: Float80? = "2.7".floatingPoint() // 2.7
let cgfloat: CGFloat? = "2.7".floatingPoint() // 2.7
There is already an initializer for FloatingPoint types but to make your code work you need to conform your Matrix Component to LosslessStringConvertible.
Can you try something like this:
extension FloatingPoint where Self == Double {
init(string: String) {
self.init(Double(string)!)
}
}
extension FloatingPoint where Self == Float {
init(string: String) {
self.init(Float(string)!)
}
}
this should work as well
extension FloatingPoint {
init(string: String) {
self.init(Self(string)!)
}
}
Suppose we have an enum and want to enumerate over it :).
If it has Int rawValue we can be provided with next and previous items using computed vars like this.
enum Fidelity: Int, CaseIterable {
case pixel
case point
case average
case datapoint
var previousFidelity: Fidelity {
return Fidelity(rawValue: rawValue - 1) ?? .pixel
}
var nextFidelity: Fidelity {
return Fidelity(rawValue: rawValue + 1) ?? .datapoint
}
}
I went further and created and extension for CaseIterable which allows next() and previous() for a wide range of types.
// Let's test Swift 4.2 for enumerating enum
// Too complex, not very efficient, but interesting
extension CaseIterable where Self: Equatable {
func next() -> Self? {
let all = Self.allCases
let idx = all.index(of: self)!
let next = all.index(after: idx)
return (next == all.endIndex) ? nil : all[next]
}
func previous() -> Self? {
let all_reversed = Self.allCases.reversed()
let idx = all_reversed.index(of: self)!
let next = all_reversed.index(after: idx)
return (next == all_reversed.endIndex) ? nil : all_reversed[next]
}
}
The question is how efficient or inefficient my solutions are (i.e. speed, memory)?
Are there any ideas for doing the same or similar things, perhaps offset(by: ).
You can implement previous() using offsetBy this way:
func previous() -> Self? {
let all = Self.allCases
var idx = all.index(of: self)!
if idx == all.startIndex {
return nil
} else {
all.formIndex(&idx, offsetBy: -1)
return all[idx]
}
}
You can combine both next() and previous() in a more generic offset function:
extension CaseIterable where Self: Equatable {
func advanced(by n: Int) -> Self? {
let all = Self.allCases
let idx = all.index(of: self)!
//An enum with a raw type has at least one case
let lastIndex = all.index(all.endIndex, offsetBy: -1)
let limit = n > 0 ? lastIndex : all.startIndex
if let newIndex = all.index(idx, offsetBy: n, limitedBy: limit) {
return all[newIndex]
} else {
return nil
}
}
}
And use it like so
let average = Fidelity.average //average
average.advanced(by: 1) //datapoint
average.advanced(by: 2) //nil
average.advanced(by: -3) //pixel
I'm trying to extend Swift's Optional type with default values. Providing empty values in API requests should raise an exception. I've done this for the String type, but I can't achieve the same result with the Integer type:
extension Optional where Wrapped == String {
var unwrappedValue: String {
get {
switch self {
case .some(let value):
return value
case .none:
return ""
}
}
}
}
The Integer version is throwing the following Error:
Protocol 'Integer' can only be used as a generic constraint because it
has Self or associated type requirements
extension Optional where Wrapped == Integer {
var unwrappedValue: Integer {
get {
switch self {
case .some(let value):
return value
case .none:
return 0
}
}
}
}
If you use this for a lot of Types you might want to consider the following addition to the answer of Leo Dabus:
protocol Defaultable {
static var defaultValue: Self { get }
}
extension Optional where Wrapped: Defaultable {
var unwrappedValue: Wrapped { return self ?? Wrapped.defaultValue }
}
This way you can extend your types very easily:
extension Int: Defaultable {
static var defaultValue: Int { return 0 }
}
extension String: Defaultable {
static var defaultValue: String { return "" }
}
extension Array: Defaultable {
static var defaultValue: Array<Element> { return [] }
}
And usage goes like this:
let optionalInt: Int? = 10 // Optional(10)
let unwrappedInt = optionalInt.unwrappedValue // 10
let optionalString: String? = "Hello" // Optional("Hello")
let unwrappedString = optionalString.unwrappedValue // "Hello"
let optionalArray: [Int]? = nil // nil
let unwrappedArray = optionalArray.unwrappedValue // []
You just need to return Wrapped instead of Integer
extension Optional where Wrapped: Integer {
var unwrappedValue: Wrapped {
switch self {
case .some(let value):
return value
case .none:
return 0
}
}
}
or simply
extension Optional where Wrapped: Integer {
var safelyUnwrapped: Wrapped { return self ?? 0 }
}
let optionalInt = Int("10")
let unwrappedValue = optionalInt.safelyUnwrapped // 10
You can also achieve using below code:
extension Optional {
func defaultValue(_ val: Wrapped) -> Wrapped { return self ?? val }
}
var str: String?
str.defaultValue("User")
var a: Int?
a.defaultValue(2)
This will work for both data types.
I'm trying to figure out how to create a generic completion handler. Below is an example illustrating an example "internal" generic completion handler and the same generic completion handler as I would want to be able to create it if I could do that in "external" form. The problem is that I don't know how to write the equivalent of the internalCompletion<T: MyEnum>... in a completion handler. I've written in the externalCompletion function what I'd imagine it could look like: something along the lines of func externalCompletion(_ completer<T: MyEnum>: ((T) -> Void) where T: Hashable)), but this is obviously not correct. Is what I'm trying to do possible? My hunch is that swift won't let the completion handler remain generic, always requiring a type casting at the function level, which would defeat the purpose per my example (i.e. func externalCompletetion<T: MyEnum>(_ completer: ((T) -> Void)) where T: Hashable, the problem with this being I would have to choose between EnumA, EnumB, and EnumC, not being able to run the completer on all three.)
typealias MyEnumKeyedData<T: MyEnum> = [T: String] where T: Hashable
// MARK : - MyEnum Protocol
protocol MyEnum {
static func all<T: MyEnum>(_:T.Type) -> [T] where T: Hashable
static var all: [MyEnum] { get }
}
extension MyEnum {
static func all<T: MyEnum>(_:T.Type) -> [T] where T: Hashable { return Self.all as! [T] }
}
// MARK : - My enums
enum EnumA: MyEnum {
case first
static var all: [MyEnum] { return [EnumA.first]}
}
enum EnumB: MyEnum {
case first
static var all: [MyEnum] { return [EnumB.first]}
}
enum EnumC: MyEnum {
case first
static var all: [MyEnum] { return [EnumC.first]}
}
// MARK : - MyEnum Data Iterator
class MyDataEnumIterator {
var dataA: MyEnumKeyedData<EnumA> = [:]
var dataB: MyEnumKeyedData<EnumB> = [:]
var dataC: MyEnumKeyedData<EnumC> = [:]
func updateData<T: MyEnum>(_ key: T, _ value: String) where T: Hashable {
switch T.self {
case is EnumA.Type: dataA[key as! EnumA] = value
case is EnumB.Type: dataB[key as! EnumB] = value
case is EnumC.Type: dataC[key as! EnumC] = value
default: fatalError("Enum does not exist")
}
}
// Internal (This works)
func internalEnumIterator() {
for key in EnumA.all(EnumA.self) { internalCompletion(key) }
for key in EnumB.all(EnumB.self) { internalCompletion(key) }
for key in EnumC.all(EnumC.self) { internalCompletion(key) }
}
func internalCompletion<T: MyEnum>(_ key: T) where T: Hashable {
let value = "\(key)"
updateData(key, value)
}
// External (This obviously doesn't, just sketching the idea)
func externalEnumIterator(_ completer<T: MyEnum>: ((T) -> Void) where T: Hashable) {
for key in EnumA.all(EnumA.self) { completer(key) }
for key in EnumB.all(EnumB.self) { completer(key) }
for key in EnumC.all(EnumC.self) { completer(key) }
}
}
// MARK : - Test cases (internal works, external does not, just sketching example)
let iterator = MyDataEnumIterator()
iterator.externalEnumIterator({ <T: MyEnum> (T) where T: Hashable in
let value = "\(key)"
iterator.updateData(key, value)
})
iterator.internalEnumIterator()
Here is a working version of the code with the minimal changes necessary to get it going
typealias MyEnumKeyedData<T: MyEnum> = [T: String] where T: Hashable
// MARK : - MyEnum Protocol
protocol MyEnum {
static func all<T: MyEnum>(_:T.Type) -> [T] where T: Hashable
static var all: [MyEnum] { get }
}
extension MyEnum {
static func all<T: MyEnum>(_:T.Type) -> [T] where T: Hashable { return Self.all as! [T] }
}
// MARK : - My enums
enum EnumA: MyEnum {
case first
static var all: [MyEnum] { return [EnumA.first]}
}
enum EnumB: MyEnum {
case first
static var all: [MyEnum] { return [EnumB.first]}
}
enum EnumC: MyEnum {
case first
static var all: [MyEnum] { return [EnumC.first]}
}
// MARK : - MyEnum Data Iterator
class MyDataEnumIterator {
var dataA: MyEnumKeyedData<EnumA> = [:]
var dataB: MyEnumKeyedData<EnumB> = [:]
var dataC: MyEnumKeyedData<EnumC> = [:]
func updateData(_ key: MyEnum, _ value: String) {
switch key {
case let key as EnumA: dataA[key] = value
case let key as EnumB: dataB[key] = value
case let key as EnumC: dataC[key] = value
default: fatalError("Enum does not exist")
}
}
// Internal (This works)
func internalEnumIterator() {
for key in EnumA.all(EnumA.self) { internalCompletion(key) }
for key in EnumB.all(EnumB.self) { internalCompletion(key) }
for key in EnumC.all(EnumC.self) { internalCompletion(key) }
}
func internalCompletion<T: MyEnum>(_ key: T) where T: Hashable {
let value = "\(key)"
updateData(key, value)
}
func EnumIterator(_ compeltitionHandler: (MyEnum) -> Void) {
for key in EnumA.all(EnumA.self) { compeltitionHandler(key as MyEnum) }
for key in EnumB.all(EnumB.self) { compeltitionHandler(key as MyEnum) }
for key in EnumC.all(EnumC.self) { compeltitionHandler(key as MyEnum) }
}
}
let iterator = MyDataEnumIterator()
iterator.EnumIterator{ key in
let value = "\(key)"
iterator.updateData(key, value)
}
iterator.internalEnumIterator()
Here is a sane version of the code that removes all the nonsense, and adds subscript syntax:
// MARK : - MyEnum Protocol
protocol MyEnum {
static func all() -> [MyEnum]
}
// MARK : - My enums
enum EnumA: MyEnum {
case first
static func all() -> [MyEnum] { return [EnumA.first] }
}
enum EnumB: MyEnum {
case first
static func all() -> [MyEnum] { return [EnumB.first] }
}
enum EnumC: MyEnum {
case first
static func all() -> [MyEnum] { return [EnumC.first] }
}
// MARK : - MyEnum Data Iterator
class MyDataEnumIterator {
var dataA = [EnumA: String]()
var dataB = [EnumB: String]()
var dataC = [EnumC: String]()
subscript(key: MyEnum) -> String? {
get {
switch key {
case let key as EnumA: return dataA[key]
case let key as EnumB: return dataB[key]
case let key as EnumC: return dataC[key]
default: fatalError("Enum does not exist")
}
}
set {
switch key {
case let key as EnumA: dataA[key] = newValue
case let key as EnumB: dataB[key] = newValue
case let key as EnumC: dataC[key] = newValue
default: fatalError("Enum does not exist")
}
}
}
func EnumIterator(_ body: (MyEnum) -> Void) {
EnumA.all().forEach(body);
EnumB.all().forEach(body);
EnumC.all().forEach(body);
}
}
let iterator = MyDataEnumIterator()
iterator.EnumIterator{
iterator[$0] = "\($0)"
}