How can you check if a type is Optional in Swift?
Say I have a variable of type PartialKeyPath where:
struct Foo {
let bar: String
let baz: String?
}
typealias Property<Root> = (key: PartialKeyPath<Root>, value: Any?)
typealias Properties<Root> = [Property<Root>]
Now say I iterate thru an instance of Properties:
properties.forEach { prop in
let valueType1 = type(of: prop.key).valueType
let valueType2 = type(of: value)
...
How can I check here whether valueType1 is Optional<valueType2>, or whether it is Optional of any other flavor for that matter?
So far the only way I’ve found is really ugly...
Using a similar approach to Optional field type doesn't conform protocol in Swift 3, you could define a 'dummy protocol' for Optional and use this to get the wrapped metatype:
protocol OptionalProtocol {
// the metatype value for the wrapped type.
static var wrappedType: Any.Type { get }
}
extension Optional : OptionalProtocol {
static var wrappedType: Any.Type { return Wrapped.self }
}
If you just want to know a type is an optional:
func isOptionalType(_ type: Any.Type) -> Bool {
return type is OptionalProtocol.Type
}
print(isOptionalType(String.self)) // false
print(isOptionalType(String?.self)) // true
If you want to check if one metatype is the 'optional version' of another metatype:
struct Foo {
let bar: String
let baz: String?
}
struct Property<Root> {
var key: PartialKeyPath<Root>
var value: Any
}
let properties = [Property(key: \Foo.baz, value: "hello")]
/// Attempt to get the `Wrapped` metatype from a metatype of an
/// `Optional<Wrapped>`. If not an `Optional`, will return `nil`.
func wrappedTypeFromOptionalType(_ type: Any.Type) -> Any.Type? {
return (type as? OptionalProtocol.Type)?.wrappedType
}
for property in properties {
let valueType1 = type(of: property.key).valueType
let valueType2 = type(of: property.value)
if wrappedTypeFromOptionalType(valueType1) == valueType2 {
print("\(valueType1) == Optional<\(valueType2)>")
}
}
// Optional<String> == Optional<String>
However there's almost certainly a better way to do whatever you're trying to do here with the key paths.
could you use a mirror reflecting Any and check displayStyle is optional?.
func isOptional(any:Any) -> Bool {
let mirror = Mirror(reflecting: any)
if mirror.displayStyle == .Optional {
return true
} else {
return false
}
}
More on mirror display style:
https://developer.apple.com/documentation/swift/mirror.displaystyle
This is a hacky but working solution:
func isOptional(_ type: Any.Type) -> Bool {
let typeName = String(describing: type)
return typeName.hasPrefix("Optional<")
}
Test:
let t1 = Int?.self
let t2 = Bool.self
print(isOptional(t1))
// true
print(isOptional(t2))
// false
A tweak of #kelin’s answer:
postfix operator ...?!
postfix func ...?!<T>(_ instance: T) -> Bool {
let subject = "\(Mirror(reflecting: instance).subjectType)"
return !subject.hasPrefix("Optional")
}
And in the vein of #Ercell0’s answer is this superior method:
func isOptional<T>(_ instance: T) -> Bool {
guard let displayStyle = Mirror(reflecting: instance).displayStyle
else { return false }
return displayStyle == .optional
}
I'm trying to extend Swift's Optional type with default values. Providing empty values in API requests should raise an exception. I've done this for the String type, but I can't achieve the same result with the Integer type:
extension Optional where Wrapped == String {
var unwrappedValue: String {
get {
switch self {
case .some(let value):
return value
case .none:
return ""
}
}
}
}
The Integer version is throwing the following Error:
Protocol 'Integer' can only be used as a generic constraint because it
has Self or associated type requirements
extension Optional where Wrapped == Integer {
var unwrappedValue: Integer {
get {
switch self {
case .some(let value):
return value
case .none:
return 0
}
}
}
}
If you use this for a lot of Types you might want to consider the following addition to the answer of Leo Dabus:
protocol Defaultable {
static var defaultValue: Self { get }
}
extension Optional where Wrapped: Defaultable {
var unwrappedValue: Wrapped { return self ?? Wrapped.defaultValue }
}
This way you can extend your types very easily:
extension Int: Defaultable {
static var defaultValue: Int { return 0 }
}
extension String: Defaultable {
static var defaultValue: String { return "" }
}
extension Array: Defaultable {
static var defaultValue: Array<Element> { return [] }
}
And usage goes like this:
let optionalInt: Int? = 10 // Optional(10)
let unwrappedInt = optionalInt.unwrappedValue // 10
let optionalString: String? = "Hello" // Optional("Hello")
let unwrappedString = optionalString.unwrappedValue // "Hello"
let optionalArray: [Int]? = nil // nil
let unwrappedArray = optionalArray.unwrappedValue // []
You just need to return Wrapped instead of Integer
extension Optional where Wrapped: Integer {
var unwrappedValue: Wrapped {
switch self {
case .some(let value):
return value
case .none:
return 0
}
}
}
or simply
extension Optional where Wrapped: Integer {
var safelyUnwrapped: Wrapped { return self ?? 0 }
}
let optionalInt = Int("10")
let unwrappedValue = optionalInt.safelyUnwrapped // 10
You can also achieve using below code:
extension Optional {
func defaultValue(_ val: Wrapped) -> Wrapped { return self ?? val }
}
var str: String?
str.defaultValue("User")
var a: Int?
a.defaultValue(2)
This will work for both data types.
I have an enum and I'd like to create a method to return a different type for every case.
For example, I have a dictionary [String: Any]. To process the values I'm using the enum to create an array of keys:
enum Foo {
case option1
case option2
func createKey() -> [String] {
switch self {
case .option1: return ["scenario1"]
case .option2: return ["scenario2"]
}
}
}
Once I have the values, I need to cast them to a the proper type to be able to use them. Right now I'm doing it manually using if-statements but it would reduce a lot of code if I can somehow create a method in the enum to return the proper type. My current code:
let origin: [String: Any] = ["scenario2": "someText"]
let option: Foo = .option2
option.createKey().forEach {
guard let rawValue = origin[$0] else { return }
switch option {
case .option1:
guard let value = rawValue as? Int else { return }
print("Value is an Int:", value)
case .option2:
guard let value = rawValue as? String else { return }
print("Value is a String:", value)
}
}
What I would like to achieve is something like:
option.createKey().forEach {
guard let rawValue = origin[$0] as? option.getType() else { return }
}
Is this possible?
I think the core of the problem here is that Swift has strict typing. That means types must be known at compile time. This, obviously, is legal:
let s : Any = "howdy"
if let ss = s as? String {
print(ss)
}
But this is not legal:
let s : Any = "howdy"
let someType = String.self
if let ss = s as? someType { // *
print(ss)
}
someType must be a type; it cannot be a variable hiding a type inside itself. But that is precisely what, in effect, you are asking to do.
To use NSCoding with Swift's Enum type I made an extension on NSCoder:
extension NSCoder {
func encodeEnum<Enum: RawRepresentable where Enum.RawValue == String>(value: Enum, forKey key: String) {
self.encodeObject(value.rawValue, forKey: key)
}
func decodeEnumForKey<Enum: RawRepresentable where Enum.RawValue == String>(key: String) -> Enum? {
guard let returnValue = self.decodeObjectForKey(key) as? String else { return nil }
return Enum(rawValue: returnValue)
}
}
The encodeEnum method works fine for a String-backed Enum, but when I try to decode the prior encoded Enum like so:
enum MyEnum: String { case Something, Other }
class MyEnumClass: NSObject, NSCoding {
let myEnum: MyEnum
init(myEnum: MyEnum) {
self.myEnum = myEnum
}
required convenience init?(coder aDecoder: NSCoder) {
guard let tmp = aDecoder.decodeEnumForKey("myKey") as? MyEnum else { return nil }
self.init(myEnum: tmp)
}
}
I get an error on aDecoder.decodeEnumForKey("myKey"):
Value of type `NSCoder` has no member `RawValue`
I'm pretty sure it has something to do with the generic and the condition that Enum.RawValue == String. But I do not understand while it's not working, but works for encodeEnum().
The problem is that in
guard let tmp = aDecoder.decodeEnumForKey("myKey") as? MyEnum else { return nil }
the compiler cannot infer the generic placeholder of
func decodeEnumForKey<Enum: ...>(key: String) -> Enum?
to be MyEnum, you have to cast the result to MyEnum? instead:
guard let tmp = aDecoder.decodeEnumForKey("myKey") as MyEnum? else { return nil }
so that the return type is inferred as MyEnum? from the calling context.
I have several "Any" value types that I want to compare.
var any1: Any = 1
var any2: Any = 1
var any3: Any = "test"
var any4: Any = "test"
print(any1 == any2)
print(any2 == any3)
print(any3 == any4)
Using the == operator shows an error:
"Binary operator '==' cannot be applied to two 'Any' (aka
'protocol<>') operands"
What would be the way to do this ?
The only way to do this is with a function other than == that takes a type parameter, and then compares the values if they are both of that type:
func isEqual<T: Equatable>(type: T.Type, a: Any, b: Any) -> Bool {
guard let a = a as? T, let b = b as? T else { return false }
return a == b
}
Now, using your variables above, you can compare them like this:
var any1: Any = 1
var any2: Any = 1
var any3: Any = "test"
var any4: Any = "test"
isEqual(type: Int.self, a: any1, b: any2) // true
isEqual(type: Int.self, a: any2, b: any3) // false
isEqual(type: String.self, a: any3, b: any4) // true
You can do it like this by using AnyHashable:
func equals(_ x : Any, _ y : Any) -> Bool {
guard x is AnyHashable else { return false }
guard y is AnyHashable else { return false }
return (x as! AnyHashable) == (y as! AnyHashable)
}
print("\(equals(3, 4))") // false
print("\(equals(3, equals))") // false
print("\(equals(3, 3))") // true
As not every Equatable has to be Hashable, this might fail under rare circumstances.
Usually there is no reason for using above hack; but sometimes you will need it, just as sometimes AnyHashable is needed.
To use == operator, type has to conform to Equatable protocol. Any protocol does not conform to Equatable protocol, so there is no way to compare two Any values. It's logical - Any is too broad term - values can have no 'common denominator'.
What's more, Swift doesn't allow to compare two Equatable values which have different type. E.g. both Int and String conform to Equatable but 1 == "1" does not compile. The reason for that is the declaration of == in Equatable protocol: func ==(lhs: Self, rhs: Self) -> Bool. This Self basically means that both arguments have to have the same type. It it's kind of a placeholder - in implementation for specific type, Self should be replaced with the name of this type.
Aaron Rasmussen's answer can also be used as an extension, like so:
public extension Equatable {
/// Equate two values of unknown type.
static func equate(_ any0: Any, _ any1: Any) -> Bool {
guard
let equatable0 = any0 as? Self,
let equatable1 = any1 as? Self
else { return false }
return equatable0 == equatable1
}
}
final class EquatableTestCase: XCTestCase {
func test_equate() {
let int: Any = Int.random( in: .min...(.max) )
let bool: Any = Bool.random()
XCTAssertTrue( Int.equate(int, int) )
XCTAssertTrue( .equate(bool, bool) )
XCTAssertFalse( .equate(int, int) )
XCTAssertTrue( AnyHashable.equate(bool, bool) )
XCTAssertFalse( AnyHashable.equate(bool, int) )
}
}
We can solve it in the following way
enum SwiftDataType
{
case String
case Int
case Int64
case Double
case Bool
case Undefined
}
func getType( of : Any ) -> SwiftDataType
{
if let type = of as? String
{
return SwiftDataType.String
}
else if let type = of as? Int
{
return SwiftDataType.Int
}
else if let type = of as? Int64
{
return SwiftDataType.Int64
}
else if let type = of as? Double
{
return SwiftDataType.Double
}
else if let type = of as? Bool
{
return SwiftDataType.Bool
}
else
{
return SwiftDataType.Undefined
}
}
func isEqual( a : Any, b : Any ) -> Bool
{
let aType : SwiftDataType = getType( of : a )
let bType : SwiftDataType = getType( of : b )
if aType != bType
{
print("Type is not Equal -> \(aType)")
return false
}
else
{
switch aType {
case SwiftDataType.String :
guard let aValue = a as? String, let bValue = b as? String else
{
return false
}
return aValue == bValue
case SwiftDataType.Int :
guard let aValue = a as? Int, let bValue = b as? Int else
{
return false
}
return aValue == bValue
case SwiftDataType.Int64 :
guard let aValue = a as? Int64, let bValue = b as? Int64 else
{
return false
}
return aValue == bValue
case SwiftDataType.Double :
guard let aValue = a as? Double, let bValue = b as? Double else
{
return false
}
return aValue == bValue
case SwiftDataType.Bool :
guard let aValue = a as? Bool, let bValue = b as? Bool else
{
return false
}
return aValue == bValue
default:
return false
}
}
}
You can use NSObject ...
var any1: Any = 1
var any2: Any = 1
var any3: Any = "test"
var any4: Any = "test"
var any5: Any? = nil
var any6: Any? = nil
print(any1 as? NSObject == any2 as? NSObject)
print(any2 as? NSObject == any3 as? NSObject)
print(any3 as? NSObject == any4 as? NSObject)
print(any4 as? NSObject == any5 as? NSObject)
print(any5 as? NSObject == any6 as? NSObject)
This should produce :-
true
false
true
false
true
There is a semi-private function _openExistential, shipped no later than Swift 5.6, that makes this possible.
First, consider the following utilities:
protocol EquatablePair {
func perform() -> Bool
}
protocol MaybeEquatablePair {
func maybePerform() -> Bool?
}
struct Pair<T> {
var lhs: T
var rhs: T
}
extension Pair: MaybeEquatablePair {
func maybePerform() -> Bool? {
(self as? EquatablePair)?.perform()
}
}
extension Pair: EquatablePair where T: Equatable {
func perform() -> Bool {
lhs == rhs
}
}
Here, we have a conditional conformance of Pair to EquatablePair. This allows us to use self as? EquatablePair to dynamically determine if T is Equatable. The MaybeEquatablePair conformance uses this trick to produce a boolean result if T is Equatable and nil otherwise.
The next part is to get Pair<T> for some concrete type T. We really need to get Pair<T> and not Pair<Any>. This is what helps me distinguish this subtle difference: Any is nothing but a struct of two fields, one being the pointer to the wrapped value’s type and the other the pointer to the actual value. The reality is slightly more complicated but this should give you some intuition. In this way, 1 as Int gives you a plain integer, where as (1 as Int) as Ayn gives you a special struct, hence Pair<Int> is very different from Pair<Any>.
So how can we dynamically fetch some Any’s wrapped value’s type and use that to get a desired Pair<T>? Here comes _openExisential:
func genericEqual(_ lhs: Any, _ rhs: Any) -> Bool {
func openLHS<LHS>(_ lhs: LHS) -> Bool {
if let rhs = rhs as? LHS {
return Pair(lhs: lhs, rhs: rhs).maybePerform() ?? false
} else {
return false
}
}
return _openExistential(lhs, do: openLHS)
}
_openExisential takes a wrapped value and use it to call some generic function. This magic function will dynamically fetch the type for its first argument and use that to call the generic function dynamically. This is not possible using plain Swift, in which calls to generic functions must have types resolved statically.
_openExisential can do more than Any. You might have heard the term existential types. This function can, well, open existential containers. It is a very complicated topic. See the Swift Evolution proposal Implicitly Opened Exisentials if you are interested.
My code is simplified from Foundation’s implementation for AttributedString. They seem to have a set of utilities to call Equatable, Encodable, Decodable implementation for Anys. Check out AttributedString.swift and AttributedStringAttribute.swift for more. Start with struct CheckEqualityIfEquatable.