Since eventbus in Vertx is made for asynchronous message passing, is it possible to throttle the rate at which these messages gets processed? If so can we achieve using worker verticles or do we have to create a separate thread group.
The point is event bus might be capable of queuing a million messages (i am guessing the number) where are the subsequent operations happening under workers/threads should not get flooded and ultimately make something down.
Please shred some light.
Workers won't ever be flooded by EventBus, since the handlers will process only one message at a time.
What may happen, though, is that you may run out of memory, if you produce literally millions of unprocessed messages.
This usually wouldn't be the case, but you could attempt to solve that using the Counter in SharedData:
https://vertx.io/docs/apidocs/io/vertx/core/shareddata/Counter.html
Related
I am looking for a distributed timer service. Multiple remote client services should be able to register for callbacks (via REST apis) after specified intervals. The length of an interval can be 1 minute. I can live with an error margin of around 1 minute. The number of such callbacks can go up to 100,000 for now but I would need to scale up later. I have been looking at schedulers like Quartz but I am not sure if they are a fit for the problem. With Quartz, I will probably have to save the callback requests in a DB and poll every minute for overdue requests on 100,000 rows. I am not sure that will scale. Are there any out of the box solutions around? Else, how do I go about building one?
Posting as answer since i cant comment
One more options to consider is a message queue. Where you publish a message with scheduled delay so that consumers can consume after that delay.
Amazon SQS Delay Queues
Delay queues let you postpone the delivery of new messages in a queue for the specified number of seconds. If you create a delay queue, any message that you send to that queue is invisible to consumers for the duration of the delay period. You can use the CreateQueue action to create a delay queue by setting the DelaySeconds attribute to any value between 0 and 900 (15 minutes). You can also change an existing queue into a delay queue using the SetQueueAttributes action to set the queue's DelaySeconds attribute.
Scheduling Messages with RabbitMQ
https://github.com/rabbitmq/rabbitmq-delayed-message-exchange/
A user can declare an exchange with the type x-delayed-message and then publish messages with the custom header x-delay expressing in milliseconds a delay time for the message. The message will be delivered to the respective queues after x-delay milliseconds.
Out of the box solution
RocketMQ meets your requirements since it supports the Scheduled messages:
Scheduled messages differ from normal messages in that they won’t be
delivered until a provided time later.
You can register your callbacks by sending such messages:
Message message = new Message("TestTopic", "");
message.setDelayTimeLevel(3);
producer.send(message);
And then, listen to this topic to deal with your callbacks:
consumer.subscribe("TestTopic", "*");
consumer.registerMessageListener(new MessageListenerConcurrently() {...})
It does well in almost every way except that the DelayTimeLevel options can only be defined before RocketMQ server start, which means that if your MQ server has configuration messageDelayLevel=1s 5s 10s, then you just can not register your callback with delayIntervalTime=3s.
DIY
Quartz+storage can build such callback service as you mentioned, while I don't recommend that you store callback data in relational DB since you hope it to achieve high TPS and constructing distributed service will be hard to get rid of lock and transaction which bring complexity to DB coding.
I do suggest storing callback data in Redis. Because it has better performance than relational DB and it's data structure ZSET suits this scene well.
I once developed a timed callback service based on Redis and Dubbo. it provides some more useful features. Maybe you can get some ideas from it https://github.com/joooohnli/delay-callback
I know that it is possible to consume a SQS queue using multiple threads. I would like to guarantee that each message will be consumed once. I know that it is possible to change the visibility timeout of a message, e.g., equal to my processing time. If my process spend more time than the visibility timeout (e.g. a slow connection) other thread can consume the same message.
What is the best approach to guarantee that a message will be processed once?
What is the best approach to guarantee that a message will be processed once?
You're asking for a guarantee - you won't get one. You can reduce probability of a message being processed more than once to a very small amount, but you won't get a guarantee.
I'll explain why, along with strategies for reducing duplication.
Where does duplication come from
When you put a message in SQS, SQS might actually receive that message more than once
For example: a minor network hiccup while sending the message caused a transient error that was automatically retried - from the message sender's perspective, it failed once, and successfully sent once, but SQS received both messages.
SQS can internally generate duplicates
Simlar to the first example - there's a lot of computers handling messages under the covers, and SQS needs to make sure nothing gets lost - messages are stored on multiple servers, and can this can result in duplication.
For the most part, by taking advantage of SQS message visibility timeout, the chances of duplication from these sources are already pretty small - like fraction of a percent small.
If processing duplicates really isn't that bad (strive to make your message consumption idempotent!), I'd consider this good enough - reducing chances of duplication further is complicated and potentially expensive...
What can your application do to reduce duplication further?
Ok, here we go down the rabbit hole... at a high level, you will want to assign unique ids to your messages, and check against an atomic cache of ids that are in progress or completed before starting processing:
Make sure your messages have unique identifiers provided at insertion time
Without this, you'll have no way of telling duplicates apart.
Handle duplication at the 'end of the line' for messages.
If your message receiver needs to send messages off-box for further processing, then it can be another source of duplication (for similar reasons to above)
You'll need somewhere to atomically store and check these unique ids (and flush them after some timeout). There are two important states: "InProgress" and "Completed"
InProgress entries should have a timeout based on how fast you need to recover in case of processing failure.
Completed entries should have a timeout based on how long you want your deduplication window
The simplest is probably a Guava cache, but would only be good for a single processing app. If you have a lot of messages or distributed consumption, consider a database for this job (with a background process to sweep for expired entries)
Before processing the message, attempt to store the messageId in "InProgress". If it's already there, stop - you just handled a duplicate.
Check if the message is "Completed" (and stop if it's there)
Your thread now has an exclusive lock on that messageId - Process your message
Mark the messageId as "Completed" - As long as this messageId stays here, you won't process any duplicates for that messageId.
You likely can't afford infinite storage though.
Remove the messageId from "InProgress" (or just let it expire from here)
Some notes
Keep in mind that chances of duplicate without all of that is already pretty low. Depending on how much time and money deduplication of messages is worth to you, feel free to skip or modify any of the steps
For example, you could leave out "InProgress", but that opens up the small chance of two threads working on a duplicated message at the same time (the second one starting before the first has "Completed" it)
Your deduplication window is as long as you can keep messageIds in "Completed". Since you likely can't afford infinite storage, make this last at least as long as 2x your SQS message visibility timeout; there is reduced chances of duplication after that (on top of the already very low chances, but still not guaranteed).
Even with all this, there is still a chance of duplication - all the precautions and SQS message visibility timeouts help reduce this chance to very small, but the chance is still there:
Your app can crash/hang/do a very long GC right after processing the message, but before the messageId is "Completed" (maybe you're using a database for this storage and the connection to it is down)
In this case, "Processing" will eventually expire, and another thread could process this message (either after SQS visibility timeout also expires or because SQS had a duplicate in it).
Store the message, or a reference to the message, in a database with a unique constraint on the Message ID, when you receive it. If the ID exists in the table, you've already received it, and the database will not allow you to insert it again -- because of the unique constraint.
AWS SQS API doesn't automatically "consume" the message when you read it with API,etc. Developer need to make the call to delete the message themselves.
SQS does have a features call "redrive policy" as part the "Dead letter Queue Setting". You just set the read request to 1. If the consume process crash, subsequent read on the same message will put the message into dead letter queue.
SQS queue visibility timeout can be set up to 12 hours. Unless you have a special need, then you need to implement process to store the message handler in database to allow it for inspection.
You can use setVisibilityTimeout() for both messages and batches, in order to extend the visibility time until the thread has completed processing the message.
This could be done by using a scheduledExecutorService, and schedule a runnable event after half the initial visibility time. The code snippet bellow creates and executes the VisibilityTimeExtender every half of the visibilityTime with a period of half the visibility time. (The time should to guarantee the message to be processed, extended with visibilityTime/2)
private final ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);
ScheduledFuture<?> futureEvent = scheduler.scheduleAtFixedRate(new VisibilityTimeExtender(..), visibilityTime/2, visibilityTime/2, TimeUnit.SECONDS);
VisibilityTimeExtender must implement Runnable, and is where you update the new visibility time.
When the thread is done processing the message, you can delete it from the queue, and call futureEvent.cancel(true) to stop the scheduled event.
I am kafka newbie and as I was reading the docs, I had this design related question related to kafka consumer.
A kafka consumer reads messages from the kafka stream which is made up
of one or more partitions from one or more servers.
Lets say one of the incoming messages is corrupt and as a result the consumer fails to process. But when processing event logs you don't want to drop any events, as a result you do infinite retries to avoid transient errors during processing. In such cases of infinite retries, how can the consumer move forward. Is there a way to blacklist this message for next retry?
I'd think it needs manual intervention. Where we log some message metadata (don't know what exactly yet) to look at which message is failing and have logic in place where each consumer checks redis (or someplace else?) after n reties to see if this message needs to be skipped. The blacklist doesn't have to be stored forever in the redis either, only until the consumer can skip it. Here's a pseudocode of what i just described:
while (errorState) {
if (msg in blacklist) {
//skip
commitOffset()
} else {
errorState = processMessage(msg);
if (!errorState) {
commitOffset();
} else {
// log this msg so that we can add to blacklist
logger.info(msg)
}
}
}
I'd like to hear from more experienced folks to see if there are better ways to do this.
We had a requirement in our project where the processing of an incoming message to update a record was dependent on the record being present. Due to some race condition, sometimes update arrived before the insert. In such cases, we implemented couple of approaches.
A. Manual retry with a predefined delay. The code checks if the insert has arrived. If so, processing goes as normal. Otherwise, it would sleep for 500ms, then try again. This would repeat 10 times. At the end, if the message is still not processed, the code logs the message, commits the offset and moves forward. The processing of message is always done in a thread from a pool, so it doesn't block the main thread either. However, in the worst case each message would take 5 seconds of application time.
B. Recently, we refined the above solution to use a message scheduler based on kafka. So now if insert has not arrived before the update, system sends it to a separate scheduler which operates on kafka. This scheduler would replay the message after some time. After 3 retries, we again log the message and stop scheduling or retrying. This gives us the benefit of not blocking the application threads and manage when we would like to replay the message again.
I am trying to implement job queue with MSMQ to save up some time on me implementing it in SQL. After reading around I realized MSMQ might not offer what I am after. Could you please advice me if my plan is realistic using MSMQ or recommend an alternative ?
I have number of processes picking up jobs from a queue (I might need to scale out in the future), once job is picked up processing follows, during this time job is locked to other processes by status, if needed job is chucked back (status changes again) to the queue for further processing, but physically the job still sits in the queue until completed.
MSMQ doesn't let me to keep the message in the queue while working on it, eg I can peek or read. Read takes message out of queue and peek doesn't allow changing the message (status).
Thank you
Using MSMQ as a datastore is probably bad as it's not designed for storage at all. Unless the queues are transactional the messages may not even get written to disk.
Certainly updating queue items in-situ is not supported for the reasons you state.
If you don't want a full blown relational DB you could use an in-memory cache of some kind, like memcached, or a cheap object db like raven.
Take a look at RabbitMQ, or many of the other messages queues. Most offer this functionality out of the box.
For example. RabbitMQ calls what you are describing, Work Queues. Multiple consumers can pull from the same queue and not pull the same item. Furthermore, if you use acknowledgements and the processing fails, the item is not removed from the queue.
.net examples:
https://www.rabbitmq.com/tutorials/tutorial-two-dotnet.html
EDIT: After using MSMQ myself, it would probably work very well for what you are doing, as far as I can tell. The key is to use transactions and multiple queues. For example, each status should have it's own queue. It's fairly safe to "move" messages from one queue to another since it occurs within a transaction. This moving of messages is essentially your change of status.
We also use the Message Extension byte array for storing message metadata, like status. This way we don't have to alter the actual message when moving it to another queue.
MSMQ and queues in general, require a different set of patterns than what most programmers are use to. Keep that in mind.
Perhaps, if you can give more information on why you need to peek for messages that are currently in process, there would be a way to handle that scenario with MSMQ. You could always add a database for additional tracking.
I have a Microsoft Message Queue that gets populated with messages. If there is a problem with the processing of the message, I would like to retry the message, I do not want to retry the message immidiatley.
Is there a way to add a delay to the message in the MSMQ to avoid it being available for a certain amount of time??
The other alternative is to have another queue (A retry queue) and read that queue every 15 minutes, But i would rather not do this.
What you are looking for is "Poison Message Handling" ( even if its not the message fault, but an temporary environment problem ).
There are lots of articles on that. Here are some:
Poison Message Handling in MSMQ 3.0
Poison Message Handling in MSMQ 4.0
Surviving poison messages in MSMQ
In short: you have to move them to a retry queue.
So I've seen some code recently that handles this in the exception logic, the code has a built in retry step that attempts after a delay. It fails, waits for a specific amount of time, then tries again.
Essentially it recursively tries a set number of times (lengthening the delay each time). Fairly neat, no reason to have another queue. There is alot of generics and delegates used to execute the methods. Don't know if something like this could be done or not. I would suspect you would still want to handle the case of the message not being able to be delivered with another queue though.