Moving an object along a path with constant speed - unity3d

I have an object path composed by a polyline (3D point array) with points VERY unevenly distributed. I need to move an object at constant speed using a timer with interval set at 10 ms.
Unevenly distributed points produce variable speed to the human eye. So now I need to decide how to treat this long array of 3D points.
The first idea I got was to subdivide long segments in smaller parts. It works better but where points are jam-packed the problem persists.
What's the best approach in these cases? Another idea, could be to simplify the original path using Ramer–Douglas–Peucker algorithm, then to subdivide it evenly again but I'm not sure if it will fully resolve my problem.
This should be a fairly common problem in many areas of the 3D graphics, so does a proven approach exist?

I made a JavaScript pen for you https://codepen.io/dawken/pen/eYpxRmN?editors=0010 but it should be very similar in any other language. Click on the rect to add points.
You have to maintain a time dependent distance with constant speed, something like this:
const t = currentTime - startTime;
const distance = (t * speed) % totalLength;
Then you have to find the two points in the path such that the current distance is intermediate between the "distance" on the path; you store the "distance from start of the path" on each point {x, y, distanceFromStart}. The first point points[i] such that distance < points[i].distanceFromStart is your destination; the point before that points[i - 1] is your source. You need to interpolate linearly between them.
Assuming that you have no duplicate points (otherwise you get a division by zero) you could do something like this.
for (let i = 0; i < points.length; i++) {
if (distance < points[i].distanceFromStart) {
const pFrom = points[i - 1];
const pTo = points[i];
const f = (distance - pFrom.distanceFromStart) / (pTo.distanceFromStart- pFrom.distanceFromStart);
const x = pFrom.x + (pTo.x - pFrom.x) * f;
const y = pFrom.y + (pTo.y - pFrom.y) * f;
ctx.fillRect(x - 1, y - 1, 3, 3);
break;
}
}
See this pen. Click on the rectangle to add points: https://codepen.io/dawken/pen/eYpxRmN?editors=0010

Related

Scaling seperate triangles (in geometry shader?)

For a masking object, I am trying to scale each triangle individually. If I scale the object as a whole, the points further away from the center will get moved too far and I just want the object to have 'more body'. Since I use it as a mask, it doesn't matter if the triangles end up overlapping.
Although looking at this might hurt someone deep inside, this is actually what I'm trying to achieve:
I thought this was best done in a shader and I thought this could be achieved in the geometry shader since I need to know the center of the triangle. I came up with the code below, but things keep acting... strange.
float3 center = (IN[0].vertex.xyz + IN[1].vertex.xyz + IN[2].vertex.xyz) / 3;
for (int i = 0; i < 3; i++)
{
float3 distance = IN[i].vertex.xyz - center.xyz;
float3 normal = normalize(distance);
distance = abs(distance);
float scale = 1;
float3 pos = IN[i].vertex.xyz + (distance * normal.xyz * (scale - 1));
o.pos.xyz = pos.xyz;
o.pos.w = IN[i].vertex.w;
tristream.Append(o);
}
My plan was to calculate the center of the triangle and than calculate the distance between the center and each point. I would than take the normal of this distance to know in which direction I would have to move the vertex and change the position by adding the distance * normal(direction) * scale to the original position of the vertex. Yet, it seems the triangles change when you rotate the camera, so I would doubt it if this is right. Does anyone know what could be wrong?
(Just some notes:
the mesh is basically 2D, only changing across the x- and z-axis (if this matters).
I did abs(distance) since I thought it would cancel out the normal if both would be negative. I'm not sure if this is necessary.
I did scale -1 since a scale of 1 would result in the mesh staying the same. A scale of 2 should result in all triangles being twice as big.
I have no clue on what to do with the w value, but keeping the old value at least doesn't screw up that much. Perhaps here lays the problem? I thought this value should always be 1 for matrix multiplications.
)
Oke, so besides using a way to 'complex' formula to calculate the new position of each point. (Better way at https://math.stackexchange.com/questions/1563249/how-do-i-scale-a-triangle-given-its-cartesian-cooordinates). I found out that it somehow indeed had to do with the w-value. As I always thought this was mainly a helper variable, it would be awesome if someone could explain how that values screwed things over.
Anyways, including that value in the equation it works fine.
float4 center = (IN[0].vertex.xyzw + IN[1].vertex.xyzw + IN[2].vertex.xyzw) / 3;
for (int i = 0; i < 3; i++)
{
float scale = 2;
float4 pos = (IN[i].vertex.xyzw * scale) - center.xyzw;
o.pos.xyzw = pos.xyzw;
tristream.Append(o);
}
This works just fine :)

Disappearing internal boundary conditions in Lattice Boltzmann simulation

I am using Electron with TypeScript to prototype some fluid simulation code, using the Lattice Boltzmann algorithm, which will eventually go into a game. So far, I have been using static boundary conditions (with simulation calculations only occurring on the interior of the grid, and values for the boundary cells remaining fixed), an everything appears to work fine in that regime. In particular, I can impose internal boundary conditions (for example, enforcing that a certain density of fluid always exits a certain lattice site on every frame, to simulate a hose/rocket nozzle/whatever) by just manually setting the cell values in between each simulation step.
However, if I switch to using periodic boundary conditions (i.e., a wrap-around, toroidal-topology Asteroids world), the whole simulation become static. I just get constant fluid density everywhere, for all time, and it's like all of my boundary conditions are erased, no matter where in the simulation cycle (before streaming or before collision) I choose to assert them. I am not sure if periodic boundary conditions will end up being relevant for the game, but this failure makes me think there must be some subtle bug somewhere in the simulation.
The complete code is available at https://github.com/gliese1337/balloon-prototype/tree/deopt , but what I expect are the relevant portions are as follows:
class LatticeBoltzmann {
private streamed: Float32Array; // microscopic densities along each lattice direction
private collided: Float32Array;
public rho: Float32Array; // macroscopic density; cached for rendering
...
public stream(barriers: boolean[]) {
const { xdim, ydim, collided, streamed } = this;
const index = (x: number, y: number) => (x%xdim)+(y%ydim)*xdim;
const cIndex = (x: number, y: number, s: -1|1, j: number) =>
9*(((x+s*cxs[j])%xdim)+((y+s*cys[j])%ydim)*xdim)+j;
// Move particles along their directions of motion:
for (let y=1; y<ydim-1; y++) {
for (let x=1; x<xdim-1; x++) {
const i = index(x, y);
const i9 = i*9;
for (let j=0;j<9;j++) {
streamed[i9 + j] = collided[cIndex(x, y, -1, j)];
}
}
}
// Handle bounce-back from barriers
for (let y=0; y<ydim; y++) {
for (let x=0; x<xdim; x++) {
const i = index(x, y);
const i9 = i*9;
if (barriers[i]) {
for (let j=1;j<9;j++) {
streamed[cIndex(x, y, 1, j)] = collided[i9 + opp[j]];
}
}
}
}
}
// Set all densities in a cell to their equilibrium values for a given velocity and density:
public setEquilibrium(x: number, y: number, ux: number, uy: number, rho: number) {
const { xdim, streamed } = this;
const i = x + y*xdim;
this.rho[i] = rho;
const i9 = i*9;
const u2 = 1 - 1.5 * (ux * ux + uy * uy);
for (let j = 0; j < 9; j++) {
const dir = cxs[j]*ux + cys[j]*uy;
streamed[i9+j] = weights[j] * rho * (u2 + 3 * dir + 4.5 * dir * dir);
}
}
}
Lattice data is stored in two flat arrays, collided which holds the end states after the collision step and serves as input to the streaming step, and streamed, which holds the end states after the streaming step and serves as input to the next collision step. The 9 vector components for the D2Q9 lattice are stored in contiguous blocks, which are then grouped into rows. Note that I am already using mod operations to calculate array indices from lattice coordinates; this is completely irrelevant as long as the simulation calculations only range over the interior of the lattice, but it should make periodic boundaries ready-to-go as soon as the for (let y=1; y<ydim-1; y++) and for (let x=1; x<xdim-1; x++) loops have their bounds changed to for (let y=0; y<ydim; y++) and for (let x=0; x<xdim; x++), respectively. And indeed it is that specific 6-character change that I am having trouble with.
The setEquilibrium method is used to impose boundary conditions. In the driver code, it is currently being called like this, once per frame:
// Make fluid flow in from the left edge and out through the right edge
function setBoundaries(LB: LatticeBoltzmann, ux: number) {
for (let y=0; y<ydim; y++) {
LB.setEquilibrium(0, y, ux, 0, 1);
LB.setEquilibrium(xdim-1, y, ux, 0, 1);
}
}
With static boundary conditions, calling that once per frame happens to be superfluous, because it only alters the boundary lattice sites. Shifting the hard-coded x-values to the interior of the lattice, however, (where reasserting the boundary conditions once per frame is in fact necessary) does exactly what you would expect--it makes fluid appear or disappear at specific locations. Switching to periodic boundary conditions, however, results in that code ceasing to have any visible effect.
So... anybody know what I might be doing wrong?
I am not entirely certain why this particular error had this particular weird effect, but it turns out that the problem was in my use of the % operator--it's signed. Thus, when putting in a negative lattice index, naive usage of the % does not perform the wrap-around that one would want from a proper modulus operator; rather, it just gives you back the same negative value, and results in an out-of-bounds array access.
Adding on the array dimension prior to taking the remainder ensures that all values are positive, and we get the necessary wrap-around behavior.
Incidentally, being able to range over the entire lattice without bothering to treat the edges specially allows for collapsing nested loops into a single linear scan over the entire lattice, which eliminates the need for the primary index calculation function, and enormously simplifies the collision-streaming offset index function, cIndex, which now looks like const cIndex = (i: number, s: -1|1, j: number) => 9*((i+s*(cxs[j]+cys[j]*xdim)+max)%max)+j;, requiring only a single modulus instead of one per dimension. The result of that string of simplifications is a massive speedup to the code, with associated improved framerate.

Finding the tangent on a given point of a polyline

I have a list of X,Y coordinates that represents a road. For every 5 meters, I need to calculate the angle of the tangent on this road, as I have tried to illustrate in the image.
My problem is that this road is not represented by a mathematical function that I can simply derive, it is represented by a list of coordinates (UTM33N).
In my other similar projects we use ArcGIS/ESRI libraries to perform geographical functions such as this, but in this project I need to be independent of any software that require the end user to have a license, so I need to do the calculations myself (or find a free/open source library that can do it).
I am using a cubic spline function to make the line rounded between the coordinates, since all tangents on a line segment would just be parallell to the segment otherwise.
But now I am stuck. I am considering simply calculating the angle between any three points on the line (given enough points), and using this to find the tangents, but that doesn't sound like a good method. Any suggestions?
In the end, I concluded that the points were plentiful enough to give an accurate angle using simple geometry:
//Calculate delta values
var dx = next.X - curr.X;
var dy = next.Y - curr.Y;
var dz = next.Z - curr.Z;
//Calculate horizontal and 3D length of this segment.
var hLength = Math.Sqrt(dx * dx + dy * dy);
var length = Math.Sqrt(hLength * hLength + dz * dz);
//Calculate horizontal and vertical angles.
hAngle = Math.Atan(dy/dx);
vAngle = Math.Atan(dz/hLength);

Move object to nearest empty space on a plane

Check the following gif: https://i.gyazo.com/72998b8e2e3174193a6a2956de2ed008.gif
I want the cylinder to instantly change location to the nearest empty space on the plane as soon as I put a cube on the cylinder. The cubes and the cylinder have box colliders attached.
At the moment the cylinder just gets stuck when I put a cube on it, and I have to click in some direction to make it start "swimming" through the cubes.
Is there any easy solution or do I have to create some sort of grid with empty gameobjects that have a tag which tells me if there's an object on them or not?
This is a common problem in RTS-like video games, and I am solving it myself. This requires a breadth-first search algorithm, which means that you're checking the closest neighbors first. You're fortunate to only have to solve this problem in a gridded-environment.
Usually what programmers will do is create a queue and add each node (space) in the entire game to that queue until an empty space is found. It will start with e.g. the above, below, and adjacent spaces to the starting space, and then recursively move out, calling the same function inside of itself and using the queue to keep track of which spaces still need to be checked. It will also need to have a way to know whether a space has already been checked and avoid those spaces.
Another solution I'm conceiving of would be to generate a (conceptual) Archimedean spiral from the starting point and somehow check each space along that spiral. The tricky part would be generating the right spiral and checking it at just the right points in order to hit each space once.
Here's my quick-and-dirty solution for the Archimedean spiral approach in c++:
float x, z, max = 150.0f;
vector<pair<float, float>> spiral;
//Generate the spiral vector (run this code once and store the spiral).
for (float n = 0.0f; n < max; n += (max + 1.0f - n) * 0.0001f)
{
x = cos(n) * n * 0.05f;
z = sin(n) * n * 0.05f;
//Change 1.0f to 0.5f for half-sized spaces.
//fmod is float modulus (remainder).
x = x - fmod(x, 1.0f);
z = z - fmod(z, 1.0f);
pair<float, float> currentPoint = make_pair(x, z);
//Make sure this pair isn't at (0.0f, 0.0f) and that it's not already in the spiral.
if ((x != 0.0f || z != 0.0f) && find(spiral.begin(), spiral.end(), currentPoint) == spiral.end())
{
spiral.push_back(currentPoint);
}
}
//Loop through the results (run this code per usage of the spiral).
for (unsigned int n = 0U; n < spiral.size(); ++n)
{
//Draw or test the spiral.
}
It generates a vector of unique points (float pairs) that can be iterated through in order, which will allow you to draw or test every space around the starting space in a nice, outward (breadth-first), gridded spiral. With 1.0f-sized spaces, it generates a circle of 174 test points, and with 0.5f-sized spaces, it generates a circle of 676 test points. You only have to generate this spiral once and then store it for usage numerous times throughout the rest of the program.
Note:
This spiral samples differently as it grows further and further out from the center (in the for loop: n += (max + 1.0f - n) * 0.0001f).
If you use the wrong numbers, you could very easily break this code or cause an infinite loop! Use at your own risk.
Though more memory intensive, it is probably much more time-efficient than the traditional queue-based solutions due to iterating through each space exactly once.
It is not a 100% accurate solution to the problem, however, because it is a gridded spiral; in some cases it may favor the diagonal over the lateral. This is probably negligible in most cases though.
I used this solution for a game I'm working on. More on that here. Here are some pictures (the orange lines in the first are drawn by me in Paint for illustration, and the second picture is just to demonstrate what the spiral looks like if expanded):

Procedural structure generation

I have a voxel based game in development right now and I generate my world by using Simplex Noise so far. Now I want to generate some other structures like rivers, cities and other stuff, which can't be easily generated because I split my world (which is practically infinite) into chunks of 64x128x64. I already generated trees (the leaves can grow into neighbouring chunks), by generating the trees for a chunk, plus the trees for the 8 chunks surrounding it, so leaves wouldn't be missing. But if I go into higher dimensions that can get difficult, when I have to calculate one chunk, considering chunks in an radius of 16 other chunks.
Is there a way to do this a better way?
Depending on the desired complexity of the generated structure, you may find it useful to first generate it in a separate array, perhaps even a map (a location-to-contents dictionary, useful in case of high sparseness), and then transfer the structure to the world?
As for natural land features, you may want to google how fractals are used in landscape generation.
I know this thread is old and I suck at explaining, but I'll share my approach.
So for example 5x5x5 trees. What you want is for your noise function to return the same value for an area of 5x5 blocks, so that even outside of the chunk, you can still check if you should generate a tree or not.
// Here the returned value is different for every block
float value = simplexNoise(x * frequency, z * frequency) * amplitude;
// Here it will return the same value for an area of blocks (you should use floorDiv instead of dividing, or you it will get negative coordinates wrong (-3 / 5 should be -1, not 0 like in normal division))
float value = simplexNoise(Math.floorDiv(x, 5) * frequency, Math.floorDiv(z, 5) * frequency) * amplitude;
And now we'll plant a tree. For this we need to check what x y z position this current block is relative to the tree's starting position, so we can know what part of the tree this block is.
if(value > 0.8) { // A certain threshold (checking if tree should be generated at this area)
int startX = Math.floorDiv(x, 5) * 5; // flooring the x value to every 5 units to get the start position
int startZ = Math.floorDiv(z, 5) * 5; // flooring the z value to every 5 units to get the start position
// Getting the starting height of the trunk (middle of the tree , that's why I'm adding 2 to the starting x and starting z), which is 1 block over the grass surface
int startY = height(startX + 2, startZ + 2) + 1;
int relx = x - startX; // block pos relative to starting position
int relz = z - startZ;
for(int j = startY; j < startY + 5; j++) {
int rely = j - startY;
byte tile = tree[relx][rely][relz]; // Get the needing block at this part of the tree
tiles[i][j][k] = tile;
}
}
The tree 3d array here is almost like a "prefab" of the tree, which you can use to know what block to set at the position relative to the starting point. (God I don't know how to explain this, and having english as my fifth language doesn't help me either ;-; feel free to improve my answer or create a new one). I've implemented this in my engine, and it's totally working. The structures can be as big as you want, with no chunk pre loading needed. The one problem with this method is that the trees or structures will we spawned almost within a grid, but this can easily be solved with multiple octaves with different offsets.
So recap
for (int i = 0; i < 64; i++) {
for (int k = 0; k < 64; k++) {
int x = chunkPosToWorldPosX(i); // Get world position
int z = chunkPosToWorldPosZ(k);
// Here the returned value is different for every block
// float value = simplexNoise(x * frequency, z * frequency) * amplitude;
// Here it will return the same value for an area of blocks (you should use floorDiv instead of dividing, or you it will get negative coordinates wrong (-3 / 5 should be -1, not 0 like in normal division))
float value = simplexNoise(Math.floorDiv(x, 5) * frequency, Math.floorDiv(z, 5) * frequency) * amplitude;
if(value > 0.8) { // A certain threshold (checking if tree should be generated at this area)
int startX = Math.floorDiv(x, 5) * 5; // flooring the x value to every 5 units to get the start position
int startZ = Math.floorDiv(z, 5) * 5; // flooring the z value to every 5 units to get the start position
// Getting the starting height of the trunk (middle of the tree , that's why I'm adding 2 to the starting x and starting z), which is 1 block over the grass surface
int startY = height(startX + 2, startZ + 2) + 1;
int relx = x - startX; // block pos relative to starting position
int relz = z - startZ;
for(int j = startY; j < startY + 5; j++) {
int rely = j - startY;
byte tile = tree[relx][rely][relz]; // Get the needing block at this part of the tree
tiles[i][j][k] = tile;
}
}
}
}
So 'i' and 'k' are looping withing the chunk, and 'j' is looping inside the structure. This is pretty much how it should work.
And about the rivers, I personally haven't done it yet, and I'm not sure why you need to set the blocks around the chunk when generating them ( you could just use perlin worms and it would solve problem), but it's pretty much the same idea, and for your cities too.
I read something about this on a book and what they did in these cases was to make a finer division of chunks depending on the application, i.e.: if you are going to grow very big objects, it may be useful to have another separated logic division of, for example, 128x128x128, just for this specific application.
In essence, the data resides is in the same place, you just use different logical divisions.
To be honest, never did any voxel, so don't take my answer too serious, just throwing ideas. By the way, the book is game engine gems 1, they have a gem on voxel engines there.
About rivers, can't you just set a level for water and let rivers autogenerate in mountain-side-mountain ladders? To avoid placing water inside mountain caveats, you could perform a raycast up to check if it's free N blocks up.