Integral in Anylogic - anylogic

I was wondering if anyone could please let me know the prototype of Integral function in Anylogic. Thanks a lot.
For example, how to put the lower and upper bound of integral?

There's no such thing as an integral, nevertheless, the concept of stock and flow on a system dynamics model is equivalent to an integral
The lower and upper bound are your simulation initial and end time... And if you want to define other lower and upper bounds, you have to make your flows equal to 0 until you reach the initial time and after you reach the final time.
What you are integrating is the sum of the flows that are going in minus the sum of the flows going out of the stock and the result of that integral, is the value of the stock.
Of course, you can only integrate based on time, and using an approximation method such as Euler.

Related

Don't understand the need of "grad" in lrCostFunction.m

Coding the lrCostFunction.m in Octave for the course Machine Learning in Coursera (Neural Networks) "ex3". I don't get why we need to obtain "grad". Anybody has a clue?
Thx in advance
Grad refers to the 'gradient' of the cost function.
Your objective is to minimize the cost function. In order to do that, most optimisation algorithms also need to know the equation that gives its gradient at each point, so that they can use it to move the next search in a direction that makes it more likely that the cost function will be at a lower value.
Specifically, since the gradient at a point is defined as the direction of maximal rate of 'increase' in the underlying function, typically optimisation algorithms use the current point and take a small step in the reverse direction to that indicated by the gradient.
In any case, since you're asking an abstract optimisation algorithm to optimise parameters such that a cost function is minimized by making use of its gradient at each step, you need to provide all of those inputs to the algorithm. Hence why you need to calculate 'grad' value as well as the value of the cost function itself at each point.

Why do we take the derivative of the transfer function in calculating back propagation algorithm?

What is the concept behind taking the derivative? It's interesting that for somehow teaching a system, we have to adjust its weights. But why are we doing this using a derivation of the transfer function. What is in derivation that helps us. I know derivation is the slope of a continuous function at a given point, but what does it have to do with the problem.
You must already know that the cost function is a function with the weights as the variables.
For now consider it as f(W).
Our main motive here is to find a W for which we get the minimum value for f(W).
One of the ways for doing this is to plot function f in one axis and W in another....... but remember that here W is not just a single variable but a collection of variables.
So what can be the other way?
It can be as simple as changing values of W and see if we get a lower value or not than the previous value of W.
But taking random values for all the variables in W can be a tedious task.
So what we do is, we first take random values for W and see the output of f(W) and the slope at all the values of each variable(we get this by partially differentiating the function with the i'th variable and putting the value of the i'th variable).
now once we know the slope at that point in space we move a little further towards the lower side in the slope (this little factor is termed alpha in gradient descent) and this goes on until the slope gives a opposite value stating we already reached the lowest point in the graph(graph with n dimensions, function vs W, W being a collection of n variables).
The reason is that we are trying to minimize the loss. Specifically, we do this by a gradient descent method. It basically means that from our current point in the parameter space (determined by the complete set of current weights), we want to go in a direction which will decrease the loss function. Visualize standing on a hillside and walking down the direction where the slope is steepest.
Mathematically, the direction that gives you the steepest descent from your current point in parameter space is the negative gradient. And the gradient is nothing but the vector made up of all the derivatives of the loss function with respect to each single parameter.
Backpropagation is an application of the Chain Rule to neural networks. If the forward pass involves applying a transfer function, the gradient of the loss function with respect to the weights will include the derivative of the transfer function, since the derivative of f(g(x)) is f’(g(x))g’(x).
Your question is a really good one! Why should I move the weight more in one direction when the slope of the error wrt. the weight is high? Does that really make sense? In fact it does makes sense if the error function wrt. the weight is a parabola. However it is a wild guess to assume it is a parabola. As rcpinto says, assuming the error function is a parabola, make the derivation of the a updates simple with the Chain Rule.
However, there are some other parameter update rules that actually addresses this, non-intuitive assumption. You can make update rule that takes the weight a fixed size step in the down-slope direction, and then maybe later in the training decrease the step size logarithmic as you train. (I'm not sure if this method has a formal name.)
There are also som alternative error function that can be used. Look up Cross Entropy in you neural network text book. This is an adjustment to the error function such that the derivative (of the transfer function) factor in the update rule cancels out. Just remember to pick the right cross entropy function based on you output transfer function.
When I first started getting into Neural Nets, I had this question too.
The other answers here have explained the math which makes it pretty clear that a derivative term will appear in your calculations while you are trying to update the weights. But all of those calculations are being done in order to implement Back-propagation, which is just one of the ways of updating weights! Now read on...
You are correct in assuming that at the end of the day, all a neural network tries to do is update its weights to fit the data you feed into it. Within this statement lies your answer too. What you are getting confused with here is the idea of the Back-propagation algorithm. Many textbooks use backprop to update neural nets by default but do not mention that there are other ways to update weights too. This leads to the confusion that neural nets and backprop are the same thing and are inherently connected. This also leads to the false belief that neural nets need backprop to train.
Please remember that Back-propagation is just ONE of the ways out there to train your neural network (although it is the most famous one). Now, you must have seen the math involved in backprop, and hence you can see where the derivative term comes in from (some other answers have also explained that). It is possible that other training methods won't need the derivatives, although most of them do. Read on to find out why....
Think about this intuitively, we are talking about CHANGING weights, the direct mathematical operation related to change is a derivative, makes sense that you should need to evaluate derivatives to change weights.
Do let me know if you are still confused and I'll try to modify my answer to make it better. Just as a parting piece of information, another common misconception is that gradient descent is a part of backprop, just like it is assumed that backprop is a part of neural nets. Gradient descent is just one way to minimize your cost function, there are plenty of others you can use. One of the answers above makes this wrong assumption too when it says "Specifically Gradient Descent". This is factually incorrect. :)
Training a neural network means minimizing an associated "error" function wrt the networks weights. Now there are optimization methods that use only function values (Simplex method of Nelder and Mead, Hooke and Jeeves, etc), methods that in addition use first derivatives (steepest descend, quasi Newton, conjugate gradient) and Newton methods using second derivatives as well. So if you want to use a derivative method, you have to calculate the derivatives of the error function, which in return involves the derivatives of the transfer or activation function.
Back propagation is just a nice algorithm to calculate the derivatives, and nothing more.
Yes, the question was really good, this question was also came in my head while i am understanding the Backpropagation. After doing ForwordPropagation on neural network we do back propagation in network to minimize the total error. And there also many other way to minimize the error.your question is why we are doing derivative in backpropagation, the reason is that, As we all know the meaning of derivative is to find the slope of a function or in other words we can find change of particular thing with respect to particular thing. So here we are doing derivative to minimize the total error with respect to the corresponding weights of the network.
and here by doing the derivation of total error with respect to weights we can find it's slope or in other words we can find what is the change in total error with respect to the small change of the weight, so that we can update the weight to minimize the error with the help of this Gradient Descent formula, that is, Weight= weight-Alpha*(del(Total error)/del(weight)).Or in other words New Weights = Old Weights - learning-rate x Partial derivatives of loss function w.r.t. parameters.
Here Alpha is the learning rate which is control the weight update, means if the derivative the - ve than Alpha make it +ve(Becouse of -Alpha in formula) and if +ve it's remain +ve so that weight update goes in +ve direction and it's reflected to minimize the Total error.And also the as derivative part is multiples with Alpha, it's decrees the step size of Alpha when the weight converge to the optimal value of weight(minimum error). Thats why we are doing derivative to minimize the error.

Solving ODEs in NetLogo, Eulers vs R-K vs R solver

In my model each agent solves a system of ODEs at each tick. I have employed Eulers method (similar to the systems dynamics modeler in NetLogo) to solve these first order ODEs. However, for a stable solution, I am forced to use a very small time step (dt), which means the simulation proceeds very slowly with this method. I´m curious if anyone has advice on a method to solve the ODEs more quickly? I am considering implementing Runge-Kutta (with a larger time step?) as was done here (http://academic.evergreen.edu/m/mcavityd/netlogo/Bouncing_Ball.html). I would also consider using the R extension and using an ODE solver in R. But again, the ODEs are solved by each agent, so I don´t know if this is an efficient method.
I´m hoping someone has a feel for the performance of these methods and could offer some advice. If not, I will try to share what I find out.
In general your idea is correct. For a method of order p to reach a global error level tol over an integration interval of length T you will need a step size in the magnitude range
h=pow(tol/T,1.0/p).
However, not only the discretization error accumulates over the N=T/h steps, but also the floating point error. This gives a lower bound for useful step sizes of magnitude h=pow(T*mu,1.0/(p+1)).
Example: For T=1, mu=1e-15 and tol=1e-6
the Euler method of order 1 would need a step size of about h=1e-6 and thus N=1e+6 steps and function evaluations. The range of step sizes where reasonable results can be expected is bounded below by h=3e-8.
the improved Euler or Heun method has order 2, which implies a step size 1e-3, N=1000 steps and 2N=2000 function evaluations, the lower bound for useful step sizes is 1e-3.
the classical Runge-Kutta method has order 4, which gives a required step size of about h=3e-2 with about N=30 steps and 4N=120 function evaluations. The lower bound is 1e-3.
So there is a significant gain to be had by using higher order methods. At the same time the range where step size reduction results in a lower global error also gets significantly narrower for increasing order. But at the same time the achievable accuracy increases. So one has to knowingly care when the point is reached to leave well enough alone.
The implementation of RK4 in the ball example, as in general for the numerical integration of ODE, is for an ODE system x'=f(t,x), where x is the, possibly very large, state vector
A second order ODE (system) is transformed to a first order system by making the velocities members of the state vector. x''=a(x,x') gets transformed to [x',v']=[v, a(x,v)]. The big vector of the agent system is then composed of the collection of the pairs [x,v] or, if desired, as the concatenation of the collection of all x components and the collection of all v components.
In an agent based system it is reasonable to store the components of the state vector belonging to the agent as internal variables of the agent. Then the vector operations are performed by iterating over the agent collection and computing the operation tailored to the internal variables.
Taking into consideration that in the LOGO language there are no explicit parameters for function calls, the evaluation of dotx = f(t,x) needs to first fix the correct values of t and x before calling the function evaluation of f
save t0=t, x0=x
evaluate k1 = f_of_t_x
set t=t0+h/2, x=x0+h/2*k1
evaluate k2=f_of_t_x
set x=x0+h/2*k2
evaluate k3=f_of_t_x
set t=t+h, x=x0+h*k3
evaluate k4=f_of_t_x
set x=x0+h/6*(k1+2*(k2+k3)+k4)

Implementing Bootstrap Confidence Intervals into Matlab

I apologise if this is quite obvious to some however I have been trying to get my head around bootstraps for a few hours, and for something so simple I am really struggling.
I have a large data set, however it is not normally distributed and am trying to find the confidence levels, hence why I have turned to bootstraps. I want to apply the bootstrap to the fourth column of a data set, which I can do.
However I am having trouble with the bootci function itself
ci=bootci(10000, ..... , array;
I am having trouble implementing the function, as I don't fully understand what the 2nd part of the bootci function, denoted ....., does.
I have seen #mean implemented on other examples, I'm assuming this calculates the mean for each column and applies it to the function.
If anyone could confirm my thinking or explain the function to me it would be much appreciated!
I am also unsure about how to change the sample size, could someone point me in the right direction?
From what I understand of the question:
ci = bootci(10000, #mean, X);
Will determine a 95% confidence interval of the mean of the dataset X using 10000 subsamples generated using random sampling with replacement from dataset X.
The second argument of the function #mean indicates that the function to apply to the subsamples is mean, and hence to calculate the confidence interval of the mean. You could equally pass in #std to calculate a confidence interval on the standard deviation if you wanted, or pass in any other suitable function for that matter.
From what I have read in the documentation, it does not seem to be possible to directly control the size of the subsamples used by the bootci function.

3rd-order rate limiter in Simulink? How to generate smooth triggered signals?

First for those, who are not familiar with Simulink, there is a imaginable outside-Simulink partial solution:
I need to create a vector satisfying the following conditions:
known initial value a1
known final value a2
it has a pre-defined step size, but the length is not pre-determined
the first derivative over the whole range is limited to v_max resp. -v_max
the second derivative over the whole range is limited to a_max resp. -a_max
the third derivative over the whole range is limited to j_max resp. -j_max
at the first and the final point all derivatives are zero.
Before you ask "what have you tried so far", I just had the idea to solve it outside Simulink and I tried the whole stuff below ;)
But maybe you guys have a good idea, while I keep working on my own solution.
I'd like to generate smooth ramp signals (3rd derivative limited) based on a trigger signal in Simulink.
To get a triggered step I created a triggered subsystem propagating the trigger output. It looks like that:
But I actually don't want a step, I need a very smooth ramp with limited derivatives up to the 3rd order. The math behind is:
displacement: x
speed: v = x'
acceleration: a = v' = x''
jerk: j = a' = v'' = x'''
(If this looks familiar to you, I once had a very similar question. I thought about a bounty on it, but after the necessary edit of the question both answers would have been invalid)
As there are just rate limiters of 1st order, I used two derivates and a double integration to resolve my problem. But there is a mayor drawback, I can not ignore anymore. For the sake of illustration I chose a relatively big step size of 0.1.
The complete minimal example (Fixed Step, stepsize: 0.1, ode4): Download here
It can be seen, that the signal not even reaches the intended step height of 10 and furthermore is not constant at the end.
Over the development process of my whole model, this approach was satisfactory enough for small step sizes. But I reached the point where I really need the smooth ramp as intended. That means I need a finally constant signal at exactly the value, specified by the step height gain.
I already spent days to resolve the problem, and hope to fine some help here now.
Some of my ideas:
dynamically increase the step height over the actual desired value and saturate the final output. If the rate limits,step height and the simulation step size wouldn't be flexible one could probably find a satisfying solution. But as everything has to be flexible, there are too much cases where the acceleration and jerk limit is violated.
I tried to use the Matlab function block and write my own 3rd order rate limiter. Though it seems possible for me for the trigger moment, I have no solution how to smooth the "deceleration" at the end of the ramp. Also I'd need C-compilers, which would make it hard to use my model on other systems without problems. (At least I think so.)
The solver can not be changed siginificantly (either ode3 or ode4) and a fixed step size is mandatory (0.00001 to 0.01).
Currently used, not really useful approach:
For a dynamic amplification of 1.07 I get the following output (all values normalised on their limits):
Though the displacement looks nice, the violation of the acceleration limit is very harmful.
For a dynamic amplification of 1.05 I get the following output (all values normalised on their limits):
The acceleration stays in its boundaries, but the displacement does not reach the intended value. (not really clear in the picture) The jerk is still to big. (I could live with that, but it's not nice)
So it appears to me that a inside-Simulink solutions is far from reality. Any ideas how to create a well-behaving custom function block?
Simulation step size, step height, and the rate limits are known before the simulation starts. (But I have a lot of these triggered smooth ramps in a row, it should feed a event-discrete control). So I could imagine to create the whole smooth ramp outside simulink and save it as a timeseries object and append it on the current signal when the trigger is activated.
The problems you see are because the difference is not conditioned very well.
Taking the difference amplifies the numerical that exists in your simulation.
Also the jerk will always be large if you try to apply an actual step.
I guess for your approach it would be better to work the other way around:
i.e. make a jerk, acceleration and velocity with which your step is achieved.
I think your looking for something like the ref3 block:
http://www.dct.tue.nl/home_of_ref3.htm
Note the disclaimer on the site and that it is a little cumbersome to use.
An easy (yet to be improved) way is to use a rate limiter and then a state space model with a filter. From the filter you get the velocity, which in turn you can apply a rate limiter to. You continue with rate-limiter and filters until you have the desired curve.
Otherwise you can come up with numerical rate-limiters of higher order using ie runge kutta formulas or finite differences. However it was pointed out, that they may suffer from bad conditioning.
What I usually do is to use one rate limiter and a filter of 3rd Order and just tune the time constant (1 tripple pole), such that my needs are met. This works well, esp
Integrator chains of length > 1 are unstable!
There is a huge field of research dealing with trajectory planning. The easiest way might be to use FIR filters (Biagotti et al) or to implement an online trajectory planner (Ezair et al 2014 / Knierim et al 2012).