multiple triggered subsystem + algebraic loop, initialisation problem - matlab

I have a Simulink diagram which contains multiple triggered subsystem with different timestamp. In this model I also got a feedback loop inducing an algebraic loop. Therefore the signal must be initialised, in order to do that, I used a Memory block.
The problem is on the feedback loop, the value of the signal seems to be not initialised.
I believe the origin of this problem is that it is indeed initialised by the memory block for the first timestamp, however, the trigger on the next subsystem did not occur. By default, this subsytem puts its out signal value to be 0. The loop is therefore broken there.
Did someone already encounter this situation ? Any Tips ?
Thank you for your time.

You could add initialization blocks for your trigger values? I don't know about what SubSystem0 looks like inside, but its output could use an initialization block as well, this way you guarantee that you have an input to Subsystem

Related

Can I change a block parameter using another block for conditional execution?

I'm wondering whether it is possible to change a block parameter in Simulink (or the value of one saved as a variable) using a different block to enable conditional execution. What I would like to do is have a certain block parameter (in this case, Counter) run during the simulation with an initial value, and have it change to a different value if a certain condition is satisfied.
Ultimately, what I would like to get out of this is to get a Counter block to stop running upon the satisfaction of that condition.
I'm pretty new to Simulink, but I'll detail some of the stuff I've tried so far:
Dashboard switches (Slider, Knob etc.) - I know they're used to
change tunable parameters of blocks, but they cannot be linked to
other blocked and can be only be controlled manually.
Matlab Function block - didn't seem to work, I'm obviously missing something.
Is it maybe possible to disable a certain block/link when that condition is met? That would be a straight forward approach, but I'm not sure it can be implemented in Simulink. Any help would be appreciated!
So to meet your ultimate goal have you considered to place your counter in an enabled subsytem?
Whenever the requirements are met to stop the counter you simply disable the subsystem and the counter will stop.
On the output port of that enabled subsystem you will have the options to preserve the last value or reset it to certain one.

Abort execution of parsim

For the use case of being able to abort parallel simulations with a MATLAB GUI, I would like to stop all scheduled simulations after the user pressed the Stop button.
All simulations are submitted at once using the parsim command, hence something like a callback to my GUI variables (App Designer) would be the most preferable solution.
Approaches I have considered but were not exactly providing a desirable solution:
The Simulation Manager provides the functionality to close simulations using its own interface. If I only had the code its Stop button executes...
parsim uses the Simulink.SimulationInput class as input to run simulations, allowing to modify the preSimFcn at the beginning of each simulation. I have not found a way to "skip" the simulation at its initialization phase apart from intentionally throwing an error so far.
Thank you for your help!
Update 1: Using the preSimFcn to set the the termination time equal to the start time drastically reduces simulation time. But since the first step still is computed there has to be a better solution.
simin = simin.setModelParameter('StopTime',get_param(mdl,'StartTime'))
Update 2: Intentionally throwing an error executing the preSimFcn, for example by setting it to
simin = simin.setModelParameter('SimulationCommand','stop')
provides the shortest termination times for me so far. Though, it requires catching and identifying the error in the ErrorMessageof the Simulink.SimulationOutput object. As this is exactly the "ugly" implementation I wanted to avoid, the issue is still active.
If you are using 17b or later, parsim provides an option to 'RunInBackground'. It returns an array of Future objects.
F = parsim(in, 'RunInBackground', 'on')
Please note that is only available for parallel simulations. The Simulink.Simulation.Future object F provides a cancel method which will terminate the simulation. You can use the fetchOutputs methods to fetch the output from the simulation.
F.cancel();

Get the handle of a block calling an Interpreted Matlab Function

I am using Simulink to model a waste recycling plant out of a number of masked blocks that I created, representing sorting steps, buffers etc. Each module (that is, a masked block) has a failure probability, modeled using Discrete Events. If a failure event occurs, a triggered subsystem calls an Interpreted Matlab Function ("outside" of simulink). This function is supposed to set a parameter status of the masked block representing the module that failed as well as the upstream modules' status to 0 (because obviously, everything upstream has to stop as well or the material will just pile up).
`set_param(gcb, 'status', num2str(status));
PortConnectivity = get_param(gcb,'PortConnectivity');
sources = PortConnectivity.SrcBlock;`
Basically, this will be looped until I reach a block with no own Source Block.
This all works quite well, except for one problem: The gcb command gives me the block path to the last block I highlighted manually, and not to the block that called the Interpreted Matlab function. Is there any way to get the calling block's handle (which I would use with it's Parents parameter to access the Mask's status)? (A similar question has been asked here, with no results...)
I hope you get my problem - I'll be happy to elaborate if anything's unclear; I am not claiming to be a Simulink expert, so sorry for maybe using wrong terminology.
Ok, for everyone stumbling upon this:
For the mask that contains the caller of the Matlab Interpreted Function, in the mask editor I define a parameter 'this_block' (turn visibility off), that I initialize in the Initialisation pane using
parent = get_param(gcb,'Parent');
set_param(gcb, 'this_block','Parent')
Since this masked block (responsible for modelling the failure and its upstream communication) is itself used in another masked block also present in the library (responsible for modeling the module's behaviour), I also had to check "Allow library blocks to modify it's contents" in the mask editor Inititlization pane of the parent's mask. The parameter 'this_block' is then handed over as one of the input arguments of the called function (in my case, status_communication(u, this_block)).

Determining direct-feedthrough paths without compilation/execution

I am currently working on a tool written in M-Script that executes a set of checks on a given simulink model. This tool does not compile/execute the model, I'm using find_system and get_param to retrieve all the information I need in order to run the routines of my tool.
I've reached a point where I need to determine whether a certain block has direct-feedthrough or not. I am not entirely sure how to do this. Two possible solutions come to mind:
A property might store this information and might be accessible via get_param. After investigating this, I could not find any such property.
Some block types have direct-feedthrough (Sum, Logic, ...), some other do not (Unit Delay, Integrator), so I could use the block type to determine whether a block has direct-feedthrough or not. Since I'm not an experienced Simulink modeller, I'm not sure if its possible to tell whether a block has direct-feedthrough by solely looking at its block type. Also, this would require a lookup table including all Simulink block types. An impossible task, since additional block types might get added to Simulink via third party modules.
Any help or pointers to possible solutions are greatly appreciated.
after some further research...
There is an "official solution" by Matlab:
just download the linked m-file
It shows that my idea was not that bad ;)
and for the record, my idea:
I think it's doable quite easily. I cannot present you some code yet, but I'll see what I can do. My idea is the following:
programatically create a new model
Add a Constant source block and a Terminator
add the Block you want to get to know the direct feedthrough ability in the middle
add_lines
run the simulation and log the states, which will give you the xout variable in the workspace.
If there is direct feedthrough the vector is empty, otherwise not.
probably you need to include some try/catch error catching for special cases
This way you can analyse a block for direct feedthrough by just migrating it to another model, without compiling your actual main model. It's not the fastest solution, but I can not imagine that performance matters that much for you.
Here we go, this script works fine for my examples:
function feedthrough = hasfeedthrough( input )
% get block path
blockinfo = find_system('simulink','Name',input);
blockpath = blockinfo{1};
% create new system
new_system('feed');
open_system('feed');
% add test model elements
src = add_block('simulink/Sources/Constant','feed/Constant');
src_ports = get_param(src,'PortHandles');
src_out = src_ports.Outport;
dest = add_block('simulink/Sinks/To Workspace','feed/simout');
dest_ports = get_param(dest,'PortHandles');
dest_in = dest_ports.Inport;
test = add_block(blockpath,'feed/test');
test_ports = get_param(test,'PortHandles');
test_in = test_ports.Inport;
test_out = test_ports.Outport;
add_line('feed',src_out,test_in);
add_line('feed',test_out,dest_in);
% setup simulation
set_param('feed','StopTime','0.1');
set_param('feed','Solver','ode3');
set_param('feed','FixedStep','0.05');
set_param('feed','SaveState','on');
% run simulation and get states
sim('feed');
% if condition for blocks like state space
feedthrough = isempty(xout);
if ~feedthrough
a = simout.data;
if ~any(a == xout);
feedthrough = ~feedthrough;
end
end
delete system
close_system('feed',1)
delete('feed');
end
When enter for example 'Gain' it will return 1, when you enter 'Integrator' it will return 0.
Execution time on my ancient machine is 1.3sec, not that bad.
Things you probably still have to do:
add another parameter, to define whether the block is continuous or discrete time and set the solver accordingly.
test some "extraordinary" blocks, maybe it's not working for everything. Also I haven implemented anything which could deal with logic, but actually the constant is 1 so it should work as well.
Just try out everything, at least it's a good base for you to work on.
A famous exception is the StateSpace Block which can have direct feedthrough AND states. But there are not sooo much standard blocks with this "behaviour". If you also have to deal with third party blocks you could get into some trouble, I have to admit that.
possible solution for the state space: if one compares xout with yout than one can find another indicator for direct feedthrough: if there is, the vectors are not equal. If so, than they are equal. Just an example, but I can imagine that it is possible to find more general ways to test things like that.
besides the added simout block above one needs the condition:
% if condition for blocks like state space
feedthrough = isempty(xout);
if ~feedthrough
a = simout.data;
if ~any(a == xout);
feedthrough = ~feedthrough;
end
end
From the documentation:
Tip
To determine if a block has direct feedthrough:
Double-click the
block. The block parameter dialog box opens.
Click the Help button in
the block parameter dialog box. The block reference page opens.
Scroll
to the Characteristics section of the block reference page, which
lists whether or not that block has direct feedthrough.
I couldn't find a programmatic equivalent though...
Based on a similar approach to the one by #thewaywewalk, you could set up a temporary model that contains an algebraic loop, similar to,
(Note that you would replace the State-Space block with any block that you want to test.)
Then set the diagnostics to error out if there is an algebraic loop,
If an error occurs when the model is compiled
>> modelname([],[],[],'compile');
(and you should check that it is the Algebraic Loop error that has occured), then the block has direct feed though.
If no error occurs then the block does not have direct feed though.
At this point you would need to terminate the model using
>> modelname([],[],[],'term');
If the block has multiple inports or outprts then you'll need to iterate over all combinations of them.

Simulink: Synchronizing and timing

in order to simulate some processes I have a problem with getting a predefined working order of my self modeled blocks.
How can I be sure, that for example Block A must be finished before Block B and C start working?
The problem is, that some Blocks shall work after some others and some shall not. I must admit I have not much experience with Simulink in order of doing time-depending things (althought basic knowledge of simulink is available).
For instance this scenario shall be realised:
A -> B, C -> D, E, F
The main thing is, that all blocks A-F have no logic correlation to each other, they all do several things. My aim is to make B and C start working, after A has finished. And D/E/F after B AND C have finished.
In this case, the word "parallel" was the wrong word, this does not have to be calculated really parallely. Just making sure, that this complies with a predifined steady order.
Edit:
My new idea is to use the matlab workspace als buffer, so my block A can push its results to workspace (by the "to workspace" block). But now I have to make sure, that block B and C may read the results (with "From workspace") of A AFTER A pushed its information to workspace...how to do this?
Edit2:
Here's a screenshot which should make some thinks clearer:
As the documentation of "Sorted order" refers, the set up seems to be ok (including the subsystems timing). But unfortunately problem still exists. The variable "simin" is loaded from workspace, before it was written :( As you see, the display shows "1", which it shouldn't do. In the very first run of the simulation I get an exception, that the variable "simin" does not exist.
It would be nice, if you can help me with my issue.
Greets, poeschlorn
So in your example, if you have Block A connected with the same wire to both B and C, when Block A is finished, Block B and C will work in parallel.
EDIT:
I am using the same blocks as you are, but it works for me. I think you are over complicating things. The way you are setting block priorities is no different than how Simulink runs the blocks without them. Below you can see my setup and the output on both binary displays.
The error you see on the first run is due to Simulink not creating the variable until the first time step is being executed. When Simulink builds the simulation it sees that the variable used as input from the workspace is not created.
If the connection between the block are not enough to set the order, you can use block priorities.
A tip to test the execution order is to add an "embedded Matlab block" with a disp command displaying the name of the block.
It's not really clear what you're asking. When you say that Block A must be finished, do you mean the Output function? The way simulation works in Simulink is that the blocks are run serially, so Block B and C would never run until Block A finished it's Output function.
I don't know of any obvious way of running blocks B and C in parallel currently in Simulink.