I have a Spark dataframe where few columns having a different type of date format.
To handle this I have written below code to keep a consistent type of format for all the date columns.
As the date column date format may get change every time hence I have defined a set of date formats in dt_formats.
def to_timestamp_multiple(s: Column, formats: Seq[String]): Column = {
coalesce(formats.map(fmt => to_timestamp(s, fmt)):_*)
}
val dt_formats= Seq("dd-MMM-yyyy", "MMM-dd-yyyy", "yyyy-MM-dd","MM/dd/yy","dd-MM-yy","dd-MM-yyyy","yyyy/MM/dd","dd/MM/yyyy")
val newDF = df.withColumn("ETD1", date_format(to_timestamp_multiple($"ETD",Seq("dd-MMM-yyyy", dt_formats)).cast("date"), "yyyy-MM-dd")).drop("ETD").withColumnRenamed("ETD1","ETD")
But here I have to create a new column then I have to drop older column then rename the new column.
that make the code unnecessary very clumsy hence I want to get override from this code.
I am trying to implement similar functionality by writing a Scala below function but it is throwing the exception org.apache.spark.sql.catalyst.parser.ParseException:, but I am unable to identify the what change I should made to make it work..
val CleansedData= rawDF.selectExpr(rawDF.columns.map(
x => { x match {
case "ETA" => s"""date_format(to_timestamp_multiple($x, dt_formats).cast("date"), "yyyy-MM-dd") as ETA"""
case _ => x
} } ) : _*)
Hence seeking help.
Thanks in advance.
Create a UDF in order to use with select. The select method takes columns and produces another DataFrame.
Also, instead of using coalesce, it might be more straightforward simply to build a parser that handles all of the formats. You can use DateTimeFormatterBuilder for this.
import java.time.format.DateTimeFormatter
import java.time.format.DateTimeFormatterBuilder
import org.apache.spark.sql.functions.udf
import java.time.LocalDate
import scala.util.Try
import java.sql.Date
val dtFormatStrings:Seq[String] = Seq("dd-MMM-yyyy", "MMM-dd-yyyy", "yyyy-MM-dd","MM/dd/yy","dd-MM-yy","dd-MM-yyyy","yyyy/MM/dd","dd/MM/yyyy")
// use foldLeft with appendOptional method, which for each format,
// returns a new builder with that additional possible format
val initBuilder = new DateTimeFormatterBuilder()
val builder: DateTimeFormatterBuilder = dtFormatStrings.foldLeft(initBuilder)(
(b: DateTimeFormatterBuilder, s:String) => b.appendOptional(DateTimeFormatter.ofPattern(s)))
val formatter = builder.toFormatter()
// Create the UDF, which just takes
// any function returning a sql-compatible type (java.sql.Date, here)
def toTimeStamp2(dateString:String): Date = {
val dateTry: Try[Date] = Try(java.sql.Date.valueOf(LocalDate.parse(dateString, formatter)))
dateTry.toOption.getOrElse(null)
}
val timeConversionUdf = udf(toTimeStamp2 _)
// example DF and new DF
val df = Seq(("05/08/20"), ("2020-04-03"), ("unparseable")).toDF("ETD")
df.select(timeConversionUdf(col("ETD"))).toDF("ETD2").show
Output:
+----------+
| ETD2|
+----------+
|2020-05-08|
|2020-04-03|
| null|
+----------+
Note that unparseable values end up null, as shown.
try withColumn(...) with same name and coalesce as below-
val dt_formats= Seq("dd-MMM-yyyy", "MMM-dd-yyyy", "yyyy-MM-dd","MM/dd/yy","dd-MM-yy","dd-MM-yyyy","yyyy/MM/dd","dd/MM/yyyy")
val newDF = df.withColumn("ETD", coalesce(dt_formats.map(fmt => to_date($"ETD", fmt)):_*))
Related
ErrorHi I am trying to a new column to a Spark. I am trying in a data set where I want to add the percentage made by in all games.
The data set looks like this:
Name, Platform, Year, Genre, Publisher, NA_Sales, EU_Sales, JP_Sales, Other_Sales
val vgdataLines = sc.textFile("hdfs:///user/ashhall1616/bdc_data/t1/vgsales-small.csv")
val vgdata = vgdataLines.map(_.split(";"))
def toPercentage(x: Double): Double = {x * 100} val countPubl = vgdata.map(r => (r(4),1)).reduceByKey(_+_)
val addpercen = countPubl.withColumn("count", toPercentage($"count"/countPubl.count(_._2)))
I used withColumn() to add new column 'count' and expected output to be like:
(Ubisoft,3,15.0)
Can anyone tell whats wrong here?
You cannot use "withColumn" with an RDD.
You could do as follow
val addpercen = countPubl.map({case(key, value) => (key, value, toPercentage(value))})
use map to add a calculated value as new column and convert to a DataFrame if you want
import spark.implicits._
val myDf = addpercen.toDF("key","value","myNewColumn")
myDf.show()
Hope it helps.
You can not use withColumn with an RDD hence convert it to DataFrame as below and then use it
val countPubl : DataFrame = vgdata.map(r => (r(4),1)).reduceByKey(_+_).toDF()
If you still looking to use RDD then just converto it back to RDD once you add the with column as
val javaRdd : JavaRDD[Row] = countPubl.withColumn("...",col("...")).toJavaRDD
Would you be able to help in this spark prob statement
Data -
empno|ename|designation|manager|hire_date|sal|deptno
7369|SMITH|CLERK|9902|2010-12-17|800.00|20
7499|ALLEN|SALESMAN|9698|2011-02-20|1600.00|30
Code:
val rawrdd = spark.sparkContext.textFile("C:\\Users\\cmohamma\\data\\delta scenarios\\emp_20191010.txt")
val refinedRDD = rawrdd.map( lines => {
val fields = lines.split("\\|") (fields(0).toInt,fields(1),fields(2),fields(3).toInt,fields(4).toDate,fields(5).toFloat,fields(6).toInt)
})
Problem Statement - This is not working -fields(4).toDate , whats is the alternative or what is the usage ?
What i have tried ?
tried replacing it to - to_date(col(fields(4)) , "yyy-MM-dd") - Not working
2.
Step 1.
val refinedRDD = rawrdd.map( lines => {
val fields = lines.split("\\|")
(fields(0),fields(1),fields(2),fields(3),fields(4),fields(5),fields(6))
})
Now this tuples are all strings
Step 2.
mySchema = StructType(StructField(empno,IntegerType,true), StructField(ename,StringType,true), StructField(designation,StringType,true), StructField(manager,IntegerType,true), StructField(hire_date,DateType,true), StructField(sal,DoubleType,true), StructField(deptno,IntegerType,true))
Step 3. converting the string tuples to Rows
val rowRDD = refinedRDD.map(attributes => Row(attributes._1, attributes._2, attributes._3, attributes._4, attributes._5 , attributes._6, attributes._7))
Step 4.
val empDF = spark.createDataFrame(rowRDD, mySchema)
This is also not working and gives error related to types. to solve this i changed the step 1 as
(fields(0).toInt,fields(1),fields(2),fields(3).toInt,fields(4),fields(5).toFloat,fields(6).toInt)
Now this is giving error for the date type column and i am again at the main problem.
Use Case - use textFile Api, convert this to a dataframe using custom schema (StructType) on top of it.
This can be done using the case class but in case class also i would be stuck where i would need to do a fields(4).toDate (i know i can cast string to date later in code but if the above problem solutionis possible)
You can use the following code snippet
import org.apache.spark.sql.functions.to_timestamp
scala> val df = spark.read.format("csv").option("header", "true").option("delimiter", "|").load("gs://otif-etl-input/test.csv")
df: org.apache.spark.sql.DataFrame = [empno: string, ename: string ... 5 more fields]
scala> val ts = to_timestamp($"hire_date", "yyyy-MM-dd")
ts: org.apache.spark.sql.Column = to_timestamp(`hire_date`, 'yyyy-MM-dd')
scala> val enriched_df = df.withColumn("ts", ts).show(2, false)
+-----+-----+-----------+-------+----------+-------+----------+-------------------+
|empno|ename|designation|manager|hire_date |sal |deptno |ts |
+-----+-----+-----------+-------+----------+-------+----------+-------------------+
|7369 |SMITH|CLERK |9902 |2010-12-17|800.00 |20 |2010-12-17 00:00:00|
|7499 |ALLEN|SALESMAN |9698 |2011-02-20|1600.00|30 |2011-02-20 00:00:00|
+-----+-----+-----------+-------+----------+-------+----------+-------------------+
enriched_df: Unit = ()
There are multiple ways to cast your data to proper data types.
First : use InferSchema
val df = spark.read .option("delimiter", "\\|").option("header", true) .option("inferSchema", "true").csv(path)
df.printSchema
Some time it doesn't work as expected. see details here
Second : provide your own Datatype conversion template
val rawDF = Seq(("7369", "SMITH" , "2010-12-17", "800.00"), ("7499", "ALLEN","2011-02-20", "1600.00")).toDF("empno", "ename","hire_date", "sal")
//define schema in DF , hire_date as Date
val schemaDF = Seq(("empno", "INT"), ("ename", "STRING"), (**"hire_date", "date"**) , ("sal", "double")).toDF("columnName", "columnType")
rawDF.printSchema
//fetch schema details
val dataTypes = schemaDF.select("columnName", "columnType")
val listOfElements = dataTypes.collect.map(_.toSeq.toList)
//creating a map friendly template
val validationTemplate = (c: Any, t: Any) => {
val column = c.asInstanceOf[String]
val typ = t.asInstanceOf[String]
col(column).cast(typ)
}
//Apply datatype conversion template on rawDF
val convertedDF = rawDF.select(listOfElements.map(element => validationTemplate(element(0), element(1))): _*)
println("Conversion done!")
convertedDF.show()
convertedDF.printSchema
Third : Case Class
Create schema from caseclass with ScalaReflection and provide this customized schema while loading DF.
import org.apache.spark.sql.catalyst.ScalaReflection
import org.apache.spark.sql.types._
case class MySchema(empno: int, ename: String, hire_date: Date, sal: Double)
val schema = ScalaReflection.schemaFor[MySchema].dataType.asInstanceOf[StructType]
val rawDF = spark.read.schema(schema).option("header", "true").load(path)
rawDF.printSchema
Hope this will help.
I work on a project where I use a library, which is very new to me, although I was using it in other projects, without any problems.
org.joda.time.DateTime
So I work with Scala, and run the project as a job on Databricks.
scalaVersion := "2.11.12"
The code, where the exception comes from - according to my investigation so far ^^ - is the following:
var lastEndTime = config.getState("some parameters")
val timespanStart: Long = lastEndTime // last query ending time
var timespanEnd: Long = (System.currentTimeMillis / 1000) - (60*840) // 14 hours ago
val start = new DateTime(timespanStart * 1000)
val end = new DateTime(timespanEnd * 1000)
val date = DateTime.now()
Where the getState() function returns 1483228800 as Long type value.
EDIT: I use the start and end dates in filtering while building a dataframe. I compare columns (timespan type) with these values!
val df2= df
.where(col("column_name").isNotNull)
.where(col("column_name") > start &&
col("column_name") <= end)
The error I get:
ERROR Uncaught throwable from user code: java.lang.RuntimeException:
Unsupported literal type class org.joda.time.DateTime
2017-01-01T00:00:00.000Z
I am not sure I actually understand how and why this is an error, so every kind of help is more than welcome!! Thank you a lot in advance!!
This is a common problem when people start to work with Spark SQL. Spark SQL has its own types and you need to work with them if you want to take advantage of the Dataframe API. In your example you can not compare a Dataframe column value using a Spark Sql function like "col" with a DateTime object directly unless you use an UDF.
If you want to make your comparison using the Spark sql functions you can take a look to this post where you can find differences using Dates and Timestamps with Spark Dataframes.
If you (for any reason) need to use Joda you will inevitably need to build your UDF:
import org.apache.spark.sql.DataFrame
import org.joda.time.DateTime
import org.joda.time.format.{DateTimeFormat, DateTimeFormatter}
object JodaFormater {
val formatter: DateTimeFormatter = DateTimeFormat.forPattern("dd/MM/yyyy HH:mm:ss")
}
object testJoda {
import org.apache.spark.sql.functions.{udf, col}
import JodaFormater._
def your_joda_compare_udf = (start: DateTime) => (end: DateTime) => udf { str =>
val dt: DateTime = formatter.parseDateTime(str)
dt.isAfter(start.getMillis) && dt.isBefore(start.getMillis)
}
def main(args: Array[String]) : Unit = {
val start: DateTime = ???
val end : DateTime = ???
// Your dataframe with your date as StringType
val df: DataFrame = ???
df.where(your_joda_compare_udf(start)(end)(col("your_date")))
}
}
Note that using this implementation implies some overhead(memory and GC) because the conversion from StringType to a Joda DateTime object so you should use the Spark SQL functions whenever you can. In some posts you can read that udfs are black boxes because Spark can not optimize their execution, but sometimes they help.
I can load data from database, and I do some process with this data.
The problem is some table has date column as 'String', but some others trait it as 'timestamp'.
I cannot know what type of date column is until loading data.
> x.getAs[String]("date") // could be error when date column is timestamp type
> x.getAs[Timestamp]("date") // could be error when date column is string type
This is how I load data from spark.
spark.read
.format("jdbc")
.option("url", url)
.option("dbtable", table)
.option("user", user)
.option("password", password)
.load()
Is there any way to trait them together? or convert it as string always?
You can pattern-match on the type of the column (using the DataFrame's schema) to decide whether to parse the String into a Timestamp or just use the Timestamp as is - and use the unix_timestamp function to do the actual conversion:
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.StringType
// preparing some example data - df1 with String type and df2 with Timestamp type
val df1 = Seq(("a", "2016-02-01"), ("b", "2016-02-02")).toDF("key", "date")
val df2 = Seq(
("a", new Timestamp(new SimpleDateFormat("yyyy-MM-dd").parse("2016-02-01").getTime)),
("b", new Timestamp(new SimpleDateFormat("yyyy-MM-dd").parse("2016-02-02").getTime))
).toDF("key", "date")
// If column is String, converts it to Timestamp
def normalizeDate(df: DataFrame): DataFrame = {
df.schema("date").dataType match {
case StringType => df.withColumn("date", unix_timestamp($"date", "yyyy-MM-dd").cast("timestamp"))
case _ => df
}
}
// after "normalizing", you can assume date has Timestamp type -
// both would print the same thing:
normalizeDate(df1).rdd.map(r => r.getAs[Timestamp]("date")).foreach(println)
normalizeDate(df2).rdd.map(r => r.getAs[Timestamp]("date")).foreach(println)
Here are a few things you can try:
(1) Start utilizing the inferSchema function during load if you have a version that supports it. This will have spark figure the data type of columns, this doesn't work in all scenarios. Also look at the input data, if you have quotes I advise adding an extra argument to account for them during the load.
val inputDF = spark.read.format("csv").option("header","true").option("inferSchema","true").load(fileLocation)
(2) To identify the data type of a column you can use the below code, it will place all of the column name and data types into their own Arrays of Strings.
val columnNames : Array[String] = inputDF.columns
val columnDataTypes : Array[String] = inputDF.schema.fields.map(x=>x.dataType).map(x=>x.toString)
It has a easy way to address this which is get(i: Int): Any. And it will be map between Spark SQL types and return types automatically. e.g.
val fieldIndex = row.fieldIndex("date")
val date = row.get(fieldIndex)
def parseLocationColumn(df: DataFrame): DataFrame = {
df.schema("location").dataType match {
case StringType => df.withColumn("locationTemp", $"location")
.withColumn("countryTemp", lit("Unknown"))
.withColumn("regionTemp", lit("Unknown"))
.withColumn("zoneTemp", lit("Unknown"))
case _ => df.withColumn("locationTemp", $"location.location")
.withColumn("countryTemp", $"location.country")
.withColumn("regionTemp", $"location.region")
.withColumn("zoneTemp", $"location.zone")
}
}
I have a csv file with datetime column: "2011-05-02T04:52:09+00:00".
I am using scala, the file is loaded into spark DataFrame and I can use jodas time to parse the date:
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
val df = new SQLContext(sc).load("com.databricks.spark.csv", Map("path" -> "data.csv", "header" -> "true"))
val d = org.joda.time.format.DateTimeFormat.forPattern("yyyy-mm-dd'T'kk:mm:ssZ")
I would like to create new columns base on datetime field for timeserie analysis.
In DataFrame, how do I create a column base on value of another column?
I notice DataFrame has following function: df.withColumn("dt",column), is there a way to create a column base on value of existing column?
Thanks
import org.apache.spark.sql.types.DateType
import org.apache.spark.sql.functions._
import org.joda.time.DateTime
import org.joda.time.format.DateTimeFormat
val d = DateTimeFormat.forPattern("yyyy-mm-dd'T'kk:mm:ssZ")
val dtFunc: (String => Date) = (arg1: String) => DateTime.parse(arg1, d).toDate
val x = df.withColumn("dt", callUDF(dtFunc, DateType, col("dt_string")))
The callUDF, col are included in functions as the import show
The dt_string inside col("dt_string") is the origin column name of your df, which you want to transform from.
Alternatively, you could replace the last statement with:
val dtFunc2 = udf(dtFunc)
val x = df.withColumn("dt", dtFunc2(col("dt_string")))