Would you be able to help in this spark prob statement
Data -
empno|ename|designation|manager|hire_date|sal|deptno
7369|SMITH|CLERK|9902|2010-12-17|800.00|20
7499|ALLEN|SALESMAN|9698|2011-02-20|1600.00|30
Code:
val rawrdd = spark.sparkContext.textFile("C:\\Users\\cmohamma\\data\\delta scenarios\\emp_20191010.txt")
val refinedRDD = rawrdd.map( lines => {
val fields = lines.split("\\|") (fields(0).toInt,fields(1),fields(2),fields(3).toInt,fields(4).toDate,fields(5).toFloat,fields(6).toInt)
})
Problem Statement - This is not working -fields(4).toDate , whats is the alternative or what is the usage ?
What i have tried ?
tried replacing it to - to_date(col(fields(4)) , "yyy-MM-dd") - Not working
2.
Step 1.
val refinedRDD = rawrdd.map( lines => {
val fields = lines.split("\\|")
(fields(0),fields(1),fields(2),fields(3),fields(4),fields(5),fields(6))
})
Now this tuples are all strings
Step 2.
mySchema = StructType(StructField(empno,IntegerType,true), StructField(ename,StringType,true), StructField(designation,StringType,true), StructField(manager,IntegerType,true), StructField(hire_date,DateType,true), StructField(sal,DoubleType,true), StructField(deptno,IntegerType,true))
Step 3. converting the string tuples to Rows
val rowRDD = refinedRDD.map(attributes => Row(attributes._1, attributes._2, attributes._3, attributes._4, attributes._5 , attributes._6, attributes._7))
Step 4.
val empDF = spark.createDataFrame(rowRDD, mySchema)
This is also not working and gives error related to types. to solve this i changed the step 1 as
(fields(0).toInt,fields(1),fields(2),fields(3).toInt,fields(4),fields(5).toFloat,fields(6).toInt)
Now this is giving error for the date type column and i am again at the main problem.
Use Case - use textFile Api, convert this to a dataframe using custom schema (StructType) on top of it.
This can be done using the case class but in case class also i would be stuck where i would need to do a fields(4).toDate (i know i can cast string to date later in code but if the above problem solutionis possible)
You can use the following code snippet
import org.apache.spark.sql.functions.to_timestamp
scala> val df = spark.read.format("csv").option("header", "true").option("delimiter", "|").load("gs://otif-etl-input/test.csv")
df: org.apache.spark.sql.DataFrame = [empno: string, ename: string ... 5 more fields]
scala> val ts = to_timestamp($"hire_date", "yyyy-MM-dd")
ts: org.apache.spark.sql.Column = to_timestamp(`hire_date`, 'yyyy-MM-dd')
scala> val enriched_df = df.withColumn("ts", ts).show(2, false)
+-----+-----+-----------+-------+----------+-------+----------+-------------------+
|empno|ename|designation|manager|hire_date |sal |deptno |ts |
+-----+-----+-----------+-------+----------+-------+----------+-------------------+
|7369 |SMITH|CLERK |9902 |2010-12-17|800.00 |20 |2010-12-17 00:00:00|
|7499 |ALLEN|SALESMAN |9698 |2011-02-20|1600.00|30 |2011-02-20 00:00:00|
+-----+-----+-----------+-------+----------+-------+----------+-------------------+
enriched_df: Unit = ()
There are multiple ways to cast your data to proper data types.
First : use InferSchema
val df = spark.read .option("delimiter", "\\|").option("header", true) .option("inferSchema", "true").csv(path)
df.printSchema
Some time it doesn't work as expected. see details here
Second : provide your own Datatype conversion template
val rawDF = Seq(("7369", "SMITH" , "2010-12-17", "800.00"), ("7499", "ALLEN","2011-02-20", "1600.00")).toDF("empno", "ename","hire_date", "sal")
//define schema in DF , hire_date as Date
val schemaDF = Seq(("empno", "INT"), ("ename", "STRING"), (**"hire_date", "date"**) , ("sal", "double")).toDF("columnName", "columnType")
rawDF.printSchema
//fetch schema details
val dataTypes = schemaDF.select("columnName", "columnType")
val listOfElements = dataTypes.collect.map(_.toSeq.toList)
//creating a map friendly template
val validationTemplate = (c: Any, t: Any) => {
val column = c.asInstanceOf[String]
val typ = t.asInstanceOf[String]
col(column).cast(typ)
}
//Apply datatype conversion template on rawDF
val convertedDF = rawDF.select(listOfElements.map(element => validationTemplate(element(0), element(1))): _*)
println("Conversion done!")
convertedDF.show()
convertedDF.printSchema
Third : Case Class
Create schema from caseclass with ScalaReflection and provide this customized schema while loading DF.
import org.apache.spark.sql.catalyst.ScalaReflection
import org.apache.spark.sql.types._
case class MySchema(empno: int, ename: String, hire_date: Date, sal: Double)
val schema = ScalaReflection.schemaFor[MySchema].dataType.asInstanceOf[StructType]
val rawDF = spark.read.schema(schema).option("header", "true").load(path)
rawDF.printSchema
Hope this will help.
Related
I have a variable of type Map[String, Set[String]
val metadata = Map(a -> Set(b ,c))
val colToUse = "existingcol" // Option[String]
I am trying to add a new column in my dataFrame using metadata and colToUse which is an existing column in my dataframe
value of metadata is Set of Strings and
key is just a string which is a value of a column in df.
eg :
val metadata = Map['mike', ['physics','chemistry']]
val colToUse = 'student_name' // student_name is a column name in df
'mike' will be a value of "student_name" column.
i am trying to add a new column in existing DF where i can add subjects of each student based on student_name and metadata
myDF.withColumn("subjects", metadata.getorelse(col(colToUse), set.empty)
The above will not work in scala as i need pass columns only in withColumn.
Tried using UDF
def logic: (Map[String, Set[String]], String) => Set[String] =
(metadata: Map[String, Set[String]], colToUse: String) => {
metadata.getOrElse(colToUse, Set("a"))
}
def myUDF = udf(logic)
def getVal: Column = { myUDF(metadata, col(colToUse.get) }
and using it in withcolumn :
myDF.withColumn("newCol", getVal(metadata, colToUse)
Getting error : Unsupported literal type class scala.Tuple2
Looking for a best simplistic way to approach this ?
Issue 2: In getVal , for passing metadata a column is expected but i am passing a map
Is something like this is what you need:
val spark = SparkSession.builder().master("local[1]").getOrCreate()
val df = spark.createDataFrame(
spark.sparkContext.parallelize(Seq(Row("mike"))),
StructType(List(StructField("student_name", StringType)))
)
df.show()
First test dataframe:
+------------+
|student_name|
+------------+
| mike|
+------------+
And now, create the udf that uses the map:
val metadata = Map("mike" -> Set("physics", "chemistry"))
val colToUse = "student_name"
def createUdf =
udf((key: String) => metadata.getOrElse(key, Set.empty))
and uset it in withColumn function:
df.withColumn("subjects", createUdf(col(colToUse))).show()
it gives:
+------------+--------------------+
|student_name| subjects|
+------------+--------------------+
| mike|[physics, chemistry]|
+------------+--------------------+
am I missing something?
I would like to create dataframe names dynamically from a collection.
Please see below:
val set1 = Set("category1","category2","category3")
The following is a UDF which takes a string x from the set as input and generate the dataframe accordingly:
def catDfgen(x: String): DataFrame = {
spark.sql(s"select * from table where col1 = '$x'")
}
Now I need help here, to create not only DataFrame but also the DataFrame name should be dynamically generated in order to achieve
val category1DF = catDfgen($x)
val category2DF = catDfgen($x)
...etc. Would it be possible to do it using the code below?
set1.map( x => val $x+"DF" = catDfgen($x))
If not please suggest an effective method.
Suman, I believe the below might help your use-case
import org.apache.spark.sql.{DataFrame, SparkSession}
object Test extends App {
val spark: SparkSession = SparkSession.builder().master("local").getOrCreate()
val set1 = Set("category1","category2","category3")
val dfs: Map[String, DataFrame] = set1.map(x =>
(s"${x}DF", spark.sql(s"select * from table where col1 = '$x'").alias(s"${x}DF").toDF())
).toMap
dfs("category1DF").show()
spark.stop()
}
I have a text file on HDFS and I want to convert it to a Data Frame in Spark.
I am using the Spark Context to load the file and then try to generate individual columns from that file.
val myFile = sc.textFile("file.txt")
val myFile1 = myFile.map(x=>x.split(";"))
After doing this, I am trying the following operation.
myFile1.toDF()
I am getting an issues since the elements in myFile1 RDD are now array type.
How can I solve this issue?
Update - as of Spark 1.6, you can simply use the built-in csv data source:
spark: SparkSession = // create the Spark Session
val df = spark.read.csv("file.txt")
You can also use various options to control the CSV parsing, e.g.:
val df = spark.read.option("header", "false").csv("file.txt")
For Spark version < 1.6:
The easiest way is to use spark-csv - include it in your dependencies and follow the README, it allows setting a custom delimiter (;), can read CSV headers (if you have them), and it can infer the schema types (with the cost of an extra scan of the data).
Alternatively, if you know the schema you can create a case-class that represents it and map your RDD elements into instances of this class before transforming into a DataFrame, e.g.:
case class Record(id: Int, name: String)
val myFile1 = myFile.map(x=>x.split(";")).map {
case Array(id, name) => Record(id.toInt, name)
}
myFile1.toDF() // DataFrame will have columns "id" and "name"
I have given different ways to create DataFrame from text file
val conf = new SparkConf().setAppName(appName).setMaster("local")
val sc = SparkContext(conf)
raw text file
val file = sc.textFile("C:\\vikas\\spark\\Interview\\text.txt")
val fileToDf = file.map(_.split(",")).map{case Array(a,b,c) =>
(a,b.toInt,c)}.toDF("name","age","city")
fileToDf.foreach(println(_))
spark session without schema
import org.apache.spark.sql.SparkSession
val sparkSess =
SparkSession.builder().appName("SparkSessionZipsExample")
.config(conf).getOrCreate()
val df = sparkSess.read.option("header",
"false").csv("C:\\vikas\\spark\\Interview\\text.txt")
df.show()
spark session with schema
import org.apache.spark.sql.types._
val schemaString = "name age city"
val fields = schemaString.split(" ").map(fieldName => StructField(fieldName,
StringType, nullable=true))
val schema = StructType(fields)
val dfWithSchema = sparkSess.read.option("header",
"false").schema(schema).csv("C:\\vikas\\spark\\Interview\\text.txt")
dfWithSchema.show()
using sql context
import org.apache.spark.sql.SQLContext
val fileRdd =
sc.textFile("C:\\vikas\\spark\\Interview\\text.txt").map(_.split(",")).map{x
=> org.apache.spark.sql.Row(x:_*)}
val sqlDf = sqlCtx.createDataFrame(fileRdd,schema)
sqlDf.show()
If you want to use the toDF method, you have to convert your RDD of Array[String] into a RDD of a case class. For example, you have to do:
case class Test(id:String,filed2:String)
val myFile = sc.textFile("file.txt")
val df= myFile.map( x => x.split(";") ).map( x=> Test(x(0),x(1)) ).toDF()
You will not able to convert it into data frame until you use implicit conversion.
val sqlContext = new SqlContext(new SparkContext())
import sqlContext.implicits._
After this only you can convert this to data frame
case class Test(id:String,filed2:String)
val myFile = sc.textFile("file.txt")
val df= myFile.map( x => x.split(";") ).map( x=> Test(x(0),x(1)) ).toDF()
val df = spark.read.textFile("abc.txt")
case class Abc (amount:Int, types: String, id:Int) //columns and data types
val df2 = df.map(rec=>Amount(rec(0).toInt, rec(1), rec(2).toInt))
rdd2.printSchema
root
|-- amount: integer (nullable = true)
|-- types: string (nullable = true)
|-- id: integer (nullable = true)
A txt File with PIPE (|) delimited file can be read as :
df = spark.read.option("sep", "|").option("header", "true").csv("s3://bucket_name/folder_path/file_name.txt")
I know I am quite late to answer this but I have come up with a different answer:
val rdd = sc.textFile("/home/training/mydata/file.txt")
val text = rdd.map(lines=lines.split(",")).map(arrays=>(ararys(0),arrays(1))).toDF("id","name").show
You can read a file to have an RDD and then assign schema to it. Two common ways to creating schema are either using a case class or a Schema object [my preferred one]. Follows the quick snippets of code that you may use.
Case Class approach
case class Test(id:String,name:String)
val myFile = sc.textFile("file.txt")
val df= myFile.map( x => x.split(";") ).map( x=> Test(x(0),x(1)) ).toDF()
Schema Approach
import org.apache.spark.sql.types._
val schemaString = "id name"
val fields = schemaString.split(" ").map(fieldName => StructField(fieldName, StringType, nullable=true))
val schema = StructType(fields)
val dfWithSchema = sparkSess.read.option("header","false").schema(schema).csv("file.txt")
dfWithSchema.show()
The second one is my preferred approach since case class has a limitation of max 22 fields and this will be a problem if your file has more than 22 fields!
I have a dataset of 2002 variables. All variables are numeric. I first read in the dataset to Spark 1.5.0 and created a Double Type dataframe following the instruction here . Then I converted the dataframe to LabeledPoint following instructions here and here. However, when I tried to print out sample rows in the generated LabeledPoint, I got the "java.lang.ClassCastException: java.lang.String cannot be cast to java.lang.Double" error. Below is the Scala code I used. Sorry for the long code but I hope that will help the debug.
Could anyone please tell me where the error is coming from and how to resolve the problem? Thank you very much for your help!
Below is the Scala code I used:
// Read in dataset but drop the header row
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val trainRDD = sc.textFile("train.txt").filter(line => !line.contains("target"))
// Read in header file to get column names. Store in an Array.
val dictFile = "header.txt"
var arrName = new Array[String](2002)
for (line <- Source.fromFile(dictFile).getLines) {
arrName = line.split('\t').map(_.trim).toArray
}
// Create dataframe using programmatically specifying the schema method
// Encode schema in a string
var schemaString = arrName.mkString(" ")
// Import Row
import org.apache.spark.sql.Row
// Import RDD
import org.apache.spark.rdd.RDD
// Import Spark SQL data types
import org.apache.spark.sql.types.{StructType,StructField,StringType,IntegerType,LongType,FloatType,DoubleType}
// Generate the Double Type schema based on the string of schema
val schema = StructType(schemaString.split(" ").map(fieldName => StructField(fieldName, DoubleType, true)))
// Create rowRDD and convert String type to Double type
val arrVar = sc.broadcast(0 to 2001 toArray)
def createRowRDD(rdd:RDD[String], anArray:org.apache.spark.broadcast.Broadcast[Array[Int]]) : org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = {
val rowRDD = rdd.map(_.split("\t")).map(_.map({y => y.toDouble})).map(p => Row.fromSeq(anArray.value map p))
return rowRDD
}
val rowRDDTrain = createRowRDD(trainRDD, arrVar)
// Apply the schema to the RDD.
val trainDF = sqlContext.createDataFrame(rowRDDTrain, schema)
trainDF.printSchema
// Verified all 2002 variables are in "double (nullable = true)" format
// Define toLabeledPoint( ) to convert dataframe to LabeledPoint format
// Reference: https://stackoverflow.com/questions/31638770/rdd-to-labeledpoint-conversion
def toLabeledPoint(dataDF:org.apache.spark.sql.DataFrame) : org.apache.spark.rdd.RDD[org.apache.spark.mllib.regression.LabeledPoint] = {
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
val targetInd = dataDF.columns.indexOf("target")
val ignored = List("target")
val featInd = dataDF.columns.diff(ignored).map(dataDF.columns.indexOf(_))
val dataLP = dataDF.rdd.map(r => LabeledPoint(r.getDouble(targetInd),
Vectors.dense(featInd.map(r.getDouble(_)).toArray)))
return dataLP
}
// Create LabeledPoint from dataframe
val trainLP = toLabeledPoint(trainDF)
// Print out sammple rows in the generated LabeledPoint
trainLP.take(5).foreach(println)
// Failed: java.lang.ClassCastException: java.lang.String cannot be cast to java.lang.Double
Update:
Thanks a lot for David Griffin's and zero323's comments below. David is correct. I find that exception is indeed caused by the null values in the data. I replaced the following original code:
def createRowRDD(rdd:RDD[String], anArray:org.apache.spark.broadcast.Broadcast[Array[Int]]) : org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = {
val rowRDD = rdd.map(_.split("\t")).map(_.map({y => y.toDouble})).map(p => Row.fromSeq(anArray.value map p))
return rowRDD
}
with this one to impute null values to 0.0 and then the problem is gone:
def createRowRDD(rdd:RDD[String], anArray:org.apache.spark.broadcast.Broadcast[Array[Int]]) : org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = {
val rowRDD = rdd.map(_.split("\t")).map(_.map({y => try {y.toDouble} catch {case _ : Throwable => 0.0}})).map(p => Row.fromSeq(anArray.value map p))
return rowRDD
}
I am trying to run random forest classification by using Spark ML api but I am having issues with creating right data frame input into pipeline.
Here is sample data:
age,hours_per_week,education,sex,salaryRange
38,40,"hs-grad","male","A"
28,40,"bachelors","female","A"
52,45,"hs-grad","male","B"
31,50,"masters","female","B"
42,40,"bachelors","male","B"
age and hours_per_week are integers while other features including label salaryRange are categorical (String)
Loading this csv file (lets call it sample.csv) can be done by Spark csv library like this:
val data = sqlContext.csvFile("/home/dusan/sample.csv")
By default all columns are imported as string so we need to change "age" and "hours_per_week" to Int:
val toInt = udf[Int, String]( _.toInt)
val dataFixed = data.withColumn("age", toInt(data("age"))).withColumn("hours_per_week",toInt(data("hours_per_week")))
Just to check how schema looks now:
scala> dataFixed.printSchema
root
|-- age: integer (nullable = true)
|-- hours_per_week: integer (nullable = true)
|-- education: string (nullable = true)
|-- sex: string (nullable = true)
|-- salaryRange: string (nullable = true)
Then lets set the cross validator and pipeline:
val rf = new RandomForestClassifier()
val pipeline = new Pipeline().setStages(Array(rf))
val cv = new CrossValidator().setNumFolds(10).setEstimator(pipeline).setEvaluator(new BinaryClassificationEvaluator)
Error shows up when running this line:
val cmModel = cv.fit(dataFixed)
java.lang.IllegalArgumentException: Field "features" does not exist.
It is possible to set label column and feature column in RandomForestClassifier ,however I have 4 columns as predictors (features) not only one.
How I should organize my data frame so it has label and features columns organized correctly?
For your convenience here is full code :
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.ml.classification.RandomForestClassifier
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.tuning.CrossValidator
import org.apache.spark.ml.Pipeline
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.functions._
import org.apache.spark.mllib.linalg.{Vector, Vectors}
object SampleClassification {
def main(args: Array[String]): Unit = {
//set spark context
val conf = new SparkConf().setAppName("Simple Application").setMaster("local");
val sc = new SparkContext(conf)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
import com.databricks.spark.csv._
//load data by using databricks "Spark CSV Library"
val data = sqlContext.csvFile("/home/dusan/sample.csv")
//by default all columns are imported as string so we need to change "age" and "hours_per_week" to Int
val toInt = udf[Int, String]( _.toInt)
val dataFixed = data.withColumn("age", toInt(data("age"))).withColumn("hours_per_week",toInt(data("hours_per_week")))
val rf = new RandomForestClassifier()
val pipeline = new Pipeline().setStages(Array(rf))
val cv = new CrossValidator().setNumFolds(10).setEstimator(pipeline).setEvaluator(new BinaryClassificationEvaluator)
// this fails with error
//java.lang.IllegalArgumentException: Field "features" does not exist.
val cmModel = cv.fit(dataFixed)
}
}
Thanks for help!
As of Spark 1.4, you can use Transformer org.apache.spark.ml.feature.VectorAssembler.
Just provide column names you want to be features.
val assembler = new VectorAssembler()
.setInputCols(Array("col1", "col2", "col3"))
.setOutputCol("features")
and add it to your pipeline.
You simply need to make sure that you have a "features" column in your dataframe that is of type VectorUDF as show below:
scala> val df2 = dataFixed.withColumnRenamed("age", "features")
df2: org.apache.spark.sql.DataFrame = [features: int, hours_per_week: int, education: string, sex: string, salaryRange: string]
scala> val cmModel = cv.fit(df2)
java.lang.IllegalArgumentException: requirement failed: Column features must be of type org.apache.spark.mllib.linalg.VectorUDT#1eef but was actually IntegerType.
at scala.Predef$.require(Predef.scala:233)
at org.apache.spark.ml.util.SchemaUtils$.checkColumnType(SchemaUtils.scala:37)
at org.apache.spark.ml.PredictorParams$class.validateAndTransformSchema(Predictor.scala:50)
at org.apache.spark.ml.Predictor.validateAndTransformSchema(Predictor.scala:71)
at org.apache.spark.ml.Predictor.transformSchema(Predictor.scala:118)
at org.apache.spark.ml.Pipeline$$anonfun$transformSchema$4.apply(Pipeline.scala:164)
at org.apache.spark.ml.Pipeline$$anonfun$transformSchema$4.apply(Pipeline.scala:164)
at scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:51)
at scala.collection.IndexedSeqOptimized$class.foldLeft(IndexedSeqOptimized.scala:60)
at scala.collection.mutable.ArrayOps$ofRef.foldLeft(ArrayOps.scala:108)
at org.apache.spark.ml.Pipeline.transformSchema(Pipeline.scala:164)
at org.apache.spark.ml.tuning.CrossValidator.transformSchema(CrossValidator.scala:142)
at org.apache.spark.ml.PipelineStage.transformSchema(Pipeline.scala:59)
at org.apache.spark.ml.tuning.CrossValidator.fit(CrossValidator.scala:107)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:67)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:72)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:74)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:76)
EDIT1
Essentially there need to be two fields in your data frame "features" for feature vector and "label" for instance labels. Instance must be of type Double.
To create a "features" fields with Vector type first create a udf as show below:
val toVec4 = udf[Vector, Int, Int, String, String] { (a,b,c,d) =>
val e3 = c match {
case "hs-grad" => 0
case "bachelors" => 1
case "masters" => 2
}
val e4 = d match {case "male" => 0 case "female" => 1}
Vectors.dense(a, b, e3, e4)
}
Now to also encode the "label" field, create another udf as shown below:
val encodeLabel = udf[Double, String]( _ match { case "A" => 0.0 case "B" => 1.0} )
Now we transform original dataframe using these two udf:
val df = dataFixed.withColumn(
"features",
toVec4(
dataFixed("age"),
dataFixed("hours_per_week"),
dataFixed("education"),
dataFixed("sex")
)
).withColumn("label", encodeLabel(dataFixed("salaryRange"))).select("features", "label")
Note that there can be extra columns / fields present in the dataframe, but in this case I have selected only features and label:
scala> df.show()
+-------------------+-----+
| features|label|
+-------------------+-----+
|[38.0,40.0,0.0,0.0]| 0.0|
|[28.0,40.0,1.0,1.0]| 0.0|
|[52.0,45.0,0.0,0.0]| 1.0|
|[31.0,50.0,2.0,1.0]| 1.0|
|[42.0,40.0,1.0,0.0]| 1.0|
+-------------------+-----+
Now its upto you to set correct parameters for your learning algorithm to make it work.
According to spark documentation on mllib - random trees, seems to me that you should define the features map that you are using and the points should be a labeledpoint.
This will tell the algorithm which column should be used as prediction and which ones are the features.
https://spark.apache.org/docs/latest/mllib-decision-tree.html