What does the rt() function in R generates? - simulation

At first, I thought I understood what will the rt() function in R generate - I thought it generates random t-valuesfrom the specified t-distribution.
For example, this function tdist <- rt(10000,19) generates, I interpreted, 10,000 t-values from a t-distribution that based on n=20 (df=19), with mean=0 and standard deviation=1.
Is that the case, or does it generate average scores (means) that are to be found under the specified t-distribution?
If the latter is the case, how can I generate from a t-distribution 10,000 times a n=20 sample with specifications mean=0, sd=1?
Thank you in advance!

Yes, rt(n, df) generates n random samples from t-distribution with df degrees of freedom.
with mean=0 and standard deviation=1.
True about distribution mean (though sampled mean would be different), but standard deviation for t-distribution is ALWAYS not a 1, but a bit larger, equal to sqrt(df/(df-2)), sqrt(19/17)=1.057 in your case.
Lets put some code (MS R open 3.5.3, Win10 x64)
q <- rt(10000, 19)
mean(q)
prints
-0.008859063
sd(q)
prints
1.049836
and
hist(q)
plots

Related

Removing mean does not give symmetric signal

I am using 64-bit Windows with Matlab R2017a.
I have Matlab data stored in a vector here. When I plot the data using the command figure; plot(B), it looks like this:
Normally, when you remove the mean from a signal like this which looks almost periodic, the signal becomes symmetric about the x-axis. I tried this using the code B2 = B - mean(B);. Upon plotting with the command figure; plot(B2), I get this:
which is not symmetric (max value is around 0.9 and min value is around -1.25). However, this result is not true for a very similar dataset found here. Before removing the mean, C looks like this:
And after, C2 = C - mean(C) looks like this:
which is symmetric about the x-axis (max value is around 1.1 and min value is around -1.1).
What results in this difference for these two seemingly similar datasets?
"Normally, when you remove the mean from a signal like this which looks almost periodic, the signal becomes symmetric about the x-axis."
That only is true, if your values are equally distributed. And your "looks periodic" is exactly what your dataset is: It looks kinda periodic, but it isn't. You have much more values close to zero than to -2. You see this a) when calculating your median, which is -0.1618 on dataset B and also visually the time it rests at zero is much longer (approx. 700 samples) than when it's around -2.2 (~400 samples).
While Christians Answer is 100% correct. It doesn't offer a solution to the problem.
To center your function like you have it around the x-axis you would need to calculate:
B3 = B - (max(B) + min(B))/2
Note: This only works sol nicely because your function "look periodic"

Random numbers that add to 1 with a minimum increment: Matlab

Having read carefully the previous question
Random numbers that add to 100: Matlab
I am struggling to solve a similar but slightly more complex problem.
I would like to create an array of n elements that sums to 1, however I want an added constraint that the minimum increment (or if you like number of significant figures) for each element is fixed.
For example if I want 10 numbers that sum to 1 without any constraint the following works perfectly:
num_stocks=10;
num_simulations=100000;
temp = [zeros(num_simulations,1),sort(rand(num_simulations,num_stocks-1),2),ones(num_simulations,1)];
weights = diff(temp,[],2);
I foolishly thought that by scaling this I could add the constraint as follows
num_stocks=10;
min_increment=0.001;
num_simulations=100000;
scaling=1/min_increment;
temp2 = [zeros(num_simulations,1),sort(round(rand(num_simulations,num_stocks-1)*scaling)/scaling,2),ones(num_simulations,1)];
weights2 = diff(temp2,[],2);
However though this works for small values of n & small values of increment, if for example n=1,000 & the increment is 0.1% then over a large number of trials the first and last numbers have a mean which is consistently below 0.1%.
I am sure there is a logical explanation/solution to this but I have been tearing my hair out to try & find it & wondered anybody would be so kind as to point me in the right direction. To put the problem into context create random stock portfolios (hence the sum to 1).
Thanks in advance
Thank you for the responses so far, just to clarify (as I think my initial question was perhaps badly phrased), it is the weights that have a fixed increment of 0.1% so 0%, 0.1%, 0.2% etc.
I did try using integers initially
num_stocks=1000;
min_increment=0.001;
num_simulations=100000;
scaling=1/min_increment;
temp = [zeros(num_simulations,1),sort(randi([0 scaling],num_simulations,num_stocks-1),2),ones(num_simulations,1)*scaling];
weights = (diff(temp,[],2)/scaling);
test=mean(weights);
but this was worse, the mean for the 1st & last weights is well below 0.1%.....
Edit to reflect excellent answer by Floris & clarify
The original code I was using to solve this problem (before finding this forum) was
function x = monkey_weights_original(simulations,stocks)
stockmatrix=1:stocks;
base_weight=1/stocks;
r=randi(stocks,stocks,simulations);
x=histc(r,stockmatrix)*base_weight;
end
This runs very fast, which was important considering I want to run a total of 10,000,000 simulations, 10,000 simulations on 1,000 stocks takes just over 2 seconds with a single core & I am running the whole code on an 8 core machine using the parallel toolbox.
It also gives exactly the distribution I was looking for in terms of means, and I think that it is just as likely to get a portfolio that is 100% in 1 stock as it is to geta portfolio that is 0.1% in every stock (though I'm happy to be corrected).
My issue issue is that although it works for 1,000 stocks & an increment of 0.1% and I guess it works for 100 stocks & an increment of 1%, as the number of stocks decreases then each pick becomes a very large percentage (in the extreme with 2 stocks you will always get a 50/50 portfolio).
In effect I think this solution is like the binomial solution Floris suggests (but more limited)
However my question has arrisen because I would like to make my approach more flexible & have the possibility of say 3 stocks & an increment of 1% which my current code will not handle correctly, hence how I stumbled accross the original question on stackoverflow
Floris's recursive approach will get to the right answer, but the speed will be a major issue considering the scale of the problem.
An example of the original research is here
http://www.huffingtonpost.com/2013/04/05/monkeys-stocks-study_n_3021285.html
I am currently working on extending it with more flexibility on portfolio weights & numbers of stock in the index, but it appears my programming & probability theory ability are a limiting factor.......
One problem I can see is that your formula allows for numbers to be zero - when the rounding operation results in two consecutive numbers to be the same after sorting. Not sure if you consider that a problem - but I suggest you think about it (it would mean your model portfolio has fewer than N stocks in it since the contribution of one of the stocks would be zero).
The other thing to note is that the probability of getting the extreme values in your distribution is half of what you want them to be: If you have uniformly distributed numbers from 0 to 1000, and you round them, the numbers that round to 0 were in the interval [0 0.5>; the ones that round to 1 came from [0.5 1.5> - twice as big. The last number (rounding to 1000) is again from a smaller interval: [999.5 1000]. Thus you will not get the first and last number as often as you think. If instead of round you use floor I think you will get the answer you expect.
EDIT
I thought about this some more, and came up with a slow but (I think) accurate method for doing this. The basic idea is this:
Think in terms of integers; rather than dividing the interval 0 - 1 in steps of 0.001, divide the interval 0 - 1000 in integer steps
If we try to divide N into m intervals, the mean size of a step should be N / m; but being integer, we would expect the intervals to be binomially distributed
This suggests an algorithm in which we choose the first interval as a binomially distributed variate with mean (N/m) - call the first value v1; then divide the remaining interval N - v1 into m-1 steps; we can do so recursively.
The following code implements this:
% random integers adding up to a definite sum
function r = randomInt(n, limit)
% returns an array of n random integers
% whose sum is limit
% calls itself recursively; slow but accurate
if n>1
v = binomialRandom(limit, 1 / n);
r = [v randomInt(n-1, limit - v)];
else
r = limit;
end
function b = binomialRandom(N, p)
b = sum(rand(1,N)<p); % slow but direct
To get 10000 instances, you run this as follows:
tic
portfolio = zeros(10000, 10);
for ii = 1:10000
portfolio(ii,:) = randomInt(10, 1000);
end
toc
This ran in 3.8 seconds on a modest machine (single thread) - of course the method for obtaining a binomially distributed random variate is the thing slowing it down; there are statistical toolboxes with more efficient functions but I don't have one. If you increase the granularity (for example, by setting limit=10000) it will slow down more since you increase the number of random number samples that are generated; with limit = 10000 the above loop took 13.3 seconds to complete.
As a test, I found mean(portfolio)' and std(portfolio)' as follows (with limit=1000):
100.20 9.446
99.90 9.547
100.09 9.456
100.00 9.548
100.01 9.356
100.00 9.484
99.69 9.639
100.06 9.493
99.94 9.599
100.11 9.453
This looks like a pretty convincing "flat" distribution to me. We would expect the numbers to be binomially distributed with a mean of 100, and standard deviation of sqrt(p*(1-p)*n). In this case, p=0.1 so we expect s = 9.4868. The values I actually got were again quite close.
I realize that this is inefficient for large values of limit, and I made no attempt at efficiency. I find that clarity trumps speed when you develop something new. But for instance you could pre-compute the cumulative binomial distributions for p=1./(1:10), then do a random lookup; but if you are just going to do this once, for 100,000 instances, it will run in under a minute; unless you intend to do it many times, I wouldn't bother. But if anyone wants to improve this code I'd be happy to hear from them.
Eventually I have solved this problem!
I found a paper by 2 academics at John Hopkins University "Sampling Uniformly From The Unit Simplex"
http://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf
In the paper they outline how naive algorthms don't work, in a way very similar to woodchips answer to the Random numbers that add to 100 question. They then go on to show that the method suggested by David Schwartz can also be slightly biased and propose a modified algorithm which appear to work.
If you want x numbers that sum to y
Sample uniformly x-1 random numbers from the range 1 to x+y-1 without replacement
Sort them
Add a zero at the beginning & x+y at the end
difference them & subtract 1 from each value
If you want to scale them as I do, then divide by y
It took me a while to realise why this works when the original approach didn't and it come down to the probability of getting a zero weight (as highlighted by Floris in his answer). To get a zero weight in the original version for all but the 1st or last weights your random numbers had to have 2 values the same but for the 1st & last ones then a random number of zero or the maximum number would result in a zero weight which is more likely.
In the revised algorithm, zero & the maximum number are not in the set of random choices & a zero weight occurs only if you select two consecutive numbers which is equally likely for every position.
I coded it up in Matlab as follows
function weights = unbiased_monkey_weights(num_simulations,num_stocks,min_increment)
scaling=1/min_increment;
sample=NaN(num_simulations,num_stocks-1);
for i=1:num_simulations
allcomb=randperm(scaling+num_stocks-1);
sample(i,:)=allcomb(1:num_stocks-1);
end
temp = [zeros(num_simulations,1),sort(sample,2),ones(num_simulations,1)*(scaling+num_stocks)];
weights = (diff(temp,[],2)-1)/scaling;
end
Obviously the loop is a bit clunky and as I'm using the 2009 version the randperm function only allows you to generate permutations of the whole set, however despite this I can run 10,000 simulations for 1,000 numbers in 5 seconds on my clunky laptop which is fast enough.
The mean weights are now correct & as a quick test I replicated woodchips generating 3 numbers that sum to 1 with the minimum increment being 0.01% & it also look right
Thank you all for your help and I hope this solution is useful to somebody else in the future
The simple answer is to use the schemes that work well with NO minimum increment, then transform the problem. As always, be careful. Some methods do NOT yield uniform sets of numbers.
Thus, suppose I want 11 numbers that sum to 100, with a constraint of a minimum increment of 5. I would first find 11 numbers that sum to 45, with no lower bound on the samples (other than zero.) I could use a tool from the file exchange for this. Simplest is to simply sample 10 numbers in the interval [0,45]. Sort them, then find the differences.
X = diff([0,sort(rand(1,10)),1]*45);
The vector X is a sample of numbers that sums to 45. But the vector Y sums to 100, with a minimum value of 5.
Y = X + 5;
Of course, this is trivially vectorized if you wish to find multiple sets of numbers with the given constraint.

Matlab fast neighborhood operation

I have a Problem. I have a Matrix A with integer values between 0 and 5.
for example like:
x=randi(5,10,10)
Now I want to call a filter, size 3x3, which gives me the the most common value
I have tried 2 solutions:
fun = #(z) mode(z(:));
y1 = nlfilter(x,[3 3],fun);
which takes very long...
and
y2 = colfilt(x,[3 3],'sliding',#mode);
which also takes long.
I have some really big matrices and both solutions take a long time.
Is there any faster way?
+1 to #Floris for the excellent suggestion to use hist. It's very fast. You can do a bit better though. hist is based on histc, which can be used instead. histc is a compiled function, i.e., not written in Matlab, which is why the solution is much faster.
Here's a small function that attempts to generalize what #Floris did (also that solution returns a vector rather than the desired matrix) and achieve what you're doing with nlfilter and colfilt. It doesn't require that the input have particular dimensions and uses im2col to efficiently rearrange the data. In fact, the the first three lines and the call to im2col are virtually identical to what colfit does in your case.
function a=intmodefilt(a,nhood)
[ma,na] = size(a);
aa(ma+nhood(1)-1,na+nhood(2)-1) = 0;
aa(floor((nhood(1)-1)/2)+(1:ma),floor((nhood(2)-1)/2)+(1:na)) = a;
[~,a(:)] = max(histc(im2col(aa,nhood,'sliding'),min(a(:))-1:max(a(:))));
a = a-1;
Usage:
x = randi(5,10,10);
y3 = intmodefilt(x,[3 3]);
For large arrays, this is over 75 times faster than colfilt on my machine. Replacing hist with histc is responsible for a factor of two speedup. There is of course no input checking so the function assumes that a is all integers, etc.
Lastly, note that randi(IMAX,N,N) returns values in the range 1:IMAX, not 0:IMAX as you seem to state.
One suggestion would be to reshape your array so each 3x3 block becomes a column vector. If your initial array dimensions are divisible by 3, this is simple. If they don't, you need to work a little bit harder. And you need to repeat this nine times, starting at different offsets into the matrix - I will leave that as an exercise.
Here is some code that shows the basic idea (using only functions available in FreeMat - I don't have Matlab on my machine at home...):
N = 100;
A = randi(0,5*ones(3*N,3*N));
B = reshape(permute(reshape(A,[3 N 3 N]),[1 3 2 4]), [ 9 N*N]);
hh = hist(B, 0:5); % histogram of each 3x3 block: bin with largest value is the mode
[mm mi] = max(hh); % mi will contain bin with largest value
figure; hist(B(:),0:5); title 'histogram of B'; % flat, as expected
figure; hist(mi-1, 0:5); title 'histogram of mi' % not flat?...
Here are the plots:
The strange thing, when you run this code, is that the distribution of mi is not flat, but skewed towards smaller values. When you inspect the histograms, you will see that is because you will frequently have more than one bin with the "max" value in it. In that case, you get the first bin with the max number. This is obviously going to skew your results badly; something to think about. A much better filter might be a median filter - the one that has equal numbers of neighboring pixels above and below. That has a unique solution (while mode can have up to four values, for nine pixels - namely, four bins with two values each).
Something to think about.
Can't show you a mex example today (wrong computer); but there are ample good examples on the Mathworks website (and all over the web) that are quite easy to follow. See for example http://www.shawnlankton.com/2008/03/getting-started-with-mex-a-short-tutorial/

get vector which's mean is zero from arbitrary vector

as i know to get zero mean vector from given vector,we should substract mean of given vector from each memeber of this vector.for example let us see following example
r=rand(1,6)
we get
0.8687 0.0844 0.3998 0.2599 0.8001 0.4314
let us create another vector s by following operation
s=r-mean(r(:));
after this we get
0.3947 -0.3896 -0.0743 -0.2142 0.3260 -0.0426
if we calculate mean of s by following formula
mean(s)
we get
ans =
-5.5511e-017
actually as i have checked this number is very small
-5.5511*exp(-017)
ans =
-2.2981e-007
so we should think that our vector has mean zero?so it means that that small deviation from 0 is because of round off error?for exmaple when we are creating white noise or such kind off random uncorrelated sequence of data,actually it is already supposed that even for such small data far from 0,it has zero mean and it is supposed in this case that for example for this case
-5.5511e-017 =0 ?
approximately of course
e-017 means 10 to the power of -17 (10^-17) but still the number is very small and hypothetically it is 0. And if you type
format long;
you will see the real precision used by Matlab
Actually you can refer to the eps command. Although matlab uses double that can encode numbers down to 2.2251e-308 the precission is determined size of the number.
Use it in the format eps(number) - it tell you the how large is the influence of the least significant bit.
on my machine eg. eps(0.3) returns 5.5511e-17 - exactly the number you report.

How can I find low regions in a graph using Perl/R?

I'm examining some biological data which is basically a long list (a few million values) of integers, each saying how well this position in the genome is covered. Here is a graphical example for a data set:
I would like to look for "valleys" in this data, that is, regions which are significantly lower than their surrounding environment.
Note that the size of the valleys I'm looking for is not really known - it may range from 50 bases to a few thousands. Defining what is a valley is of course one of the questions I'm struggling with, but the previous examples are relatively easy for me:
What kind of paradigms would you recommend using to find those valleys? I mainly program using Perl and R.
Thanks!
We do peak detection (and valley detection) using running medians and median absolute deviation. You can specify how much deviation from the running median means a peak.
In a next step, we use a binomial model to check which regions contain more "extreme" values than can be expected. This model (basically a score test) results in "peak regions" instead of single peaks. Turning it around to get "valley regions" is trivial.
The running median is calculated using the function weightedMedian from the package aroma.light. We use the embed() function to make a list of "windows" and apply a kernel function on it.
The application of the weighted median :
center <- apply(embed(tmp,wdw),1,weightedMedian,w=weights,na.rm=T)
Here tmp is the temporary data vector and wdw the window size (has to be uneven). tmp is constructed by adding (wdw-1)/2 NA values at every side of the data vector. the weights are constructed using a customized function. For the mad we use the same procedure, but then on diff(data) instead of the data itself.
Running Sample code :
require(aroma.light)
# make.weights : function to make weights on basis of a normal distribution
# n is window size !!!!!!
make.weights <- function(n,
type=c("gaussian","epanechnikov","biweight","triweight","cosinus")){
type <- match.arg(type)
x <- seq(-1,1,length.out=n)
out <-switch(type,
gaussian=(1/sqrt(2*pi)*exp(-0.5*(3*x)^2)),
epanechnikov=0.75*(1-x^2),
biweight=15/16*(1-x^2)^2,
triweight=35/32*(1-x^2)^3,
cosinus=pi/4*cos(x*pi/2),
)
out <- out/sum(out)*n
return(out)
}
# score.test : function to become a p-value based on the score test
# uses normal approximation, but is still quite correct when p0 is
# pretty small.
# This test is one-sided, and tests whether the observed proportion
# is bigger than the hypothesized proportion
score.test <- function(x,p0,w){
n <- length(x)
if(missing(w)) w<-rep(1,n)
w <- w[!is.na(x)]
x <- x[!is.na(x)]
if(sum(w)!=n) w <- w/sum(w)*n
phat <- sum(x*w)/n
z <- (phat-p0)/sqrt(p0*(1-p0)/n)
p <- 1-pnorm(z)
return(p)
}
# embed.na is a modification of embed, adding NA strings
# to the beginning and end of x. window size= 2n+1
embed.na <- function(x,n){
extra <- rep(NA,n)
x <- c(extra,x,extra)
out <- embed(x,2*n+1)
return(out)
}
# running.score : function to calculate the weighted p-value for the chance of being in
# a run of peaks. This chance is based on the weighted proportion of the neighbourhood
# the null hypothesis is calculated by taking the weighted proportion
# of detected peaks in the whole dataset.
# This lessens the need for adjusting parameters and makes the
# method more automatic.
# for a correct calculation, the weights have to sum up to n
running.score <- function(sel,n=20,w,p0){
if(missing(w)) w<- rep(1,2*n+1)
if(missing(p0))p0 <- sum(sel,na.rm=T)/length(sel[!is.na(sel)]) # null hypothesis
out <- apply(embed.na(sel,n),1,score.test,p0=p0,w=w)
return(out)
}
# running.med : function to calculate the running median and mad
# for a dataset. Window size = 2n+1
running.med <- function(x,w,n,cte=1.4826){
wdw <- 2*n+1
if(missing(w)) w <- rep(1,wdw)
center <- apply(embed.na(x,n),1,weightedMedian,w=w,na.rm=T)
mad <- median(abs(x-center))*cte
return(list(med=center,mad=mad))
}
##############################################
#
# Create series
set.seed(100)
n = 1000
series <- diffinv(rnorm(20000),lag=1)
peaks <- apply(embed.na(series,n),1,function(x) x[n+1] < quantile(x,probs=0.05,na.rm=T))
pweight <- make.weights(0.2*n+1)
p.val <- running.score(peaks,n=n/10,w=pweight)
plot(series,type="l")
points((1:length(series))[p.val<0.05],series[p.val<0.05],col="red")
points((1:length(series))[peaks],series[peaks],col="blue")
The sample code above is developed to find regions with big fluctuations rather than valleys. I adapted it a bit, but it's not optimal. On top of that, for series larger than 20000 values you need a whole lot of memory, I can't run it on my computer any more.
Alternatively, you could work with an approximation of the numerical derivative and second derivative to define valleys. In your case, this might even work better. A pragmatic way of calculating the derivatives and the minima/maxima of the first derivative :
#first derivative
f.deriv <- diff(lowess(series,f=n/length(series),delta=1)$y)
#second derivative
f.sec.deriv <- diff(f.deriv)
#minima and maxima defined by where f.sec.deriv changes sign :
minmax <- cumsum(rle(sign(f.sec.deriv))$lengths)
op <- par(mfrow=c(2,1))
plot(series,type="l")
plot(f.deriv,type="l")
points((1:length(f.deriv))[minmax],f.deriv[minmax],col="red")
par(op)
You can define a valley by different criterion :
depth
width
volume (depth*width)
You might also have valley in a big mountain, do you want these too ?
For example there is a valley here : 1 2 3 4 1000 1000 800 800 800 1000 1000 500 200 3
Try to explain with more details how YOU (or any expert in your field) would choose the valleys given the data
You might want to look at watershed
You might want to try the peak detection function to identify the regions of interest. The desired minimum width of the valleys can be specified with the span parameter.
It might be a good idea to smooth the data first, to get rid of the noise peaks like the one in the right "valley" of the blue graph. A simple stats::filter should be enough.
The final step would be to check the depth of the found "valleys". This really depends on your requirements. As a first approximation, you can simply compare the peak value with the median level of the data.