Does CLOCK_TIMESTAMP from a BEFORE trigger match log/commit order *exactly* in PG 12.3? - postgresql

I've got a Postgres 12.3 question: Can I rely on CLOCK_TIMESTAMP() in a trigger to stamp an updated_dts timestamp in exactly the same order as changes are committed to the permanent data?
On the face of it, this might sound like kind of an silly question, but I just spent two tracking down a super rare race condition in a non-Postgres system that hinged on exactly this behavior. (Lagging commits made their 'last value seen' tracking data unreliable.) Now I'm trying to figure out if it's possible for CLOCK_TIMESTAMP() to not match the order of changes recorded in the WAL perfectly.
It's simple to see how this could occur with NOW/TRANSACTION_TIMESTAMP/CURRENT_TIMESTAMP as they're returning the transaction start time, not the completion time. It's pretty easy, in that case, to record a timestamp sequence where the stamps and log order don't agree. But I can't figure out if there's any chance for commits to be saved in a different order to the BEFORE trigger CLOCK_TIMESTAMP() values.
For background, we need a 100% reliable timeline for an external search to use. As I understand it, I can create one using logical replication, and a replication-target side trigger to stamp changes as they're replayed from the log. What I'm unclear on, is if it's possible to get the same fidelity from CLOCK_TIMESTAMP() on a single server.
I haven't got the chops to get deep into the Postgres internals, and see how requests are interleaved, nor how granular execution is, and am hoping that someone here knows definitively. If this is more of a question for one of the PG mailing lists, please let me know.
-- Thanks
Below is a bit of sample code for how I'm looking at building the timestamps. It works fine, but doesn't prove anything about behavior with lots of concurrent processes.
---------------------------------------------
-- Create the trigger function
---------------------------------------------
DROP FUNCTION IF EXISTS api.set_updated CASCADE;
CREATE OR REPLACE FUNCTION api.set_updated()
RETURNS TRIGGER
AS $BODY$
BEGIN
NEW.updated_dts = CLOCK_TIMESTAMP();
RETURN NEW;
END;
$BODY$
language plpgsql;
COMMENT ON FUNCTION api.set_updated() IS 'Sets updated_dts field to CLOCK_TIMESTAMP(), if the record has changed..';
---------------------------------------------
-- Create the table
---------------------------------------------
DROP TABLE IF EXISTS api.numbers;
CREATE TABLE api.numbers (
id uuid NOT NULL DEFAULT extensions.gen_random_uuid (),
number integer NOT NULL DEFAULT NULL,
updated_dts timestamptz NOT NULL DEFAULT 'epoch'::timestamptz
);
---------------------------------------------
-- Define the triggers (binding)
---------------------------------------------
-- NOTE: I'm guessing that in production that I can use DEFAULT CLOCK_TIMESTAMP() instead of a BEFORE INSERT trigger,
-- I'm using a distinct DEFAULT value, as I want it to pop out if I'm not getting the trigger to fire.
CREATE TRIGGER trigger_api_number_before_insert
BEFORE INSERT ON api.numbers
FOR EACH ROW
EXECUTE PROCEDURE set_updated();
CREATE TRIGGER trigger_api_number_before_update
BEFORE UPDATE ON api.numbers
FOR EACH ROW
WHEN (OLD.* IS DISTINCT FROM NEW.*)
EXECUTE PROCEDURE set_updated();
---------------------------------------------
-- INSERT some data
---------------------------------------------
INSERT INTO numbers (number) values (1),(2),(3);
---------------------------------------------
-- Take a look
---------------------------------------------
SELECT * from numbers ORDER BY updated_dts ASC; -- The values should be listed as 1, 2, 3 as oldest to newest.
---------------------------------------------
-- UPDATE a row
---------------------------------------------
UPDATE numbers SET number = 11 where number = 1;
---------------------------------------------
-- Take a look
---------------------------------------------
SELECT * from numbers ORDER BY updated_dts ASC; -- The values should be listed as 2, 3, 11 as oldest to newest.

No, you cannot depend on clock_timestamp() order during trigger execution (or while evaluating a DEFAULT clause) being the same as commit order.
Commit will always happen later than the function call, and you cannot control how long it takes between them.
But I am surprised that that is a problem for you. Typically, the commit time is not visible or relevant. Why don't you simply accept the clock_timestamp() as the measure of things?

Related

Create Trigger to get hourly difference between timestamps

I have a table where I would like to calculate the difference in time (in hours) between two columns after inserting a row. I would like to set up a trigger to do this whenever an insert or update is performed on the table.
My columns are delay_start, delay_stop, and delay_duration. I would like to do the following:
delay_duration = delay_stop - delay_start
The result should be of numeric (4,2) value and go into the delay_duration category. Below is what I have so far, but it will not populate the column for some reason.
BEGIN
INSERT INTO public.deckdelays(delay_duration)
VALUES(DATEDIFF(hh, delay_stop, delay_start));
RETURN NEW;
END;
I am quite new to all of this so if anyone could help I would greatly appreciate it!
If you have Postgres 12 or later you can define delay_duration as a generated column. This allows you to eliminate triggers.
create table deckdelays(id integer generated always as identity
, delay_start timestamp
, delay_stop timestamp
, delay_duration numeric(4,2)
generated always as
( extract(epoch from (delay_stop - delay_start))/3600 )
stored
--, other attributes
);
See demo here.
But if you insist on a trigger:
create or replace
function delayduration_func()
returns trigger
language plpgsql
as $$
begin
new.delay_duration = (extract(epoch from (deckdelays.delay_stop - deckdelays.delay_start))/3600)::numeric;
return new;
end;
$$;
create trigger delaydurationset1
before insert
or update of delay_stop, delay_start
on deckdelays
execute procedure delayduration_func();
Changes:
Before trigger instead of after. A before trigger can modify the
values in a column without additional DML statements, an after
trigger cannot. Issuing a DML statement on a table within a trigger
on that same table can lead to all types of problems. It is bast
avoided if possible.
Trigger name and function name not the same. Might just be me but I
do not like different things having the same name. Although it works
often leads to confusion. Always avoid confusion if possible.
Trigger fires on update of delay_start. An update of either delay_start or delay_end also updates delay_duration.

how can I do conditional insert in postgres when there can be concurrent inserts that can create conflict?

I am trying to write an experimentation framework where user can schedule some experiments based on location-ids and time.
my table schema looks like :
TABLE experiment (
id INT NOT NULL PRIMARY KEY,
name varchar(20) NOT NULL,
locationIds varchar[] NOT NULL,
timeStart timestamp NOT NULL,
timeEnd timestamp NOT NULL,
createdAt timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
updatedAt timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP
)
there are insert operations to be done with condition that the location(s) and time should not overlap.
I wanted to know what can be done to avoid in-consistency of data state when there are 2 concurrent inserts taken up where location OR time overlaps,
Ideally I want one of the insert to succeed, but I am fine If both fails and application is supposed to retry again.
Few Approached I tried to think:
Approach:
APPROACH-1
Have an enable column that tells whether certain entry is valid
OR not.
I insert the experiment schedule entry with enable=FALSE
Then I check if there is any other entry which is enabled and is
overlapping with the current Insert.
IF there is such entry then I do nothing and that experiment is not
scheduled. Else I update the entry to enable=TRUE.
Problem : If there is a concurrent conflicting insert, then both will get enable=TRUE when both cleared the step-3.
I gave a thought if I let the transaction-isolation level to be read-uncommitted then also, I can't differentiate the ones in process and the ones already enable=TRUE
Then I thought, If I mark enable as a enum [IN_PROGRESS, ENABLED, DISABLED] then approach will look like this.
APPROACH-2
Have an enable column that tells whether certain entry is [IN_PROGRESS, ENABLED, DISABLED]
I insert the experiment schedule entry with enable=IN_PROGRESS
Then I check if there is any other entry which is enable=ENABLED OR enable=IN_PROGRESS and is overlapping with the current Insert.
IF there is such entry then I update enable=DISABLED and that experiment is not
scheduled. Else I update the entry to enable=ENABLED.
Problem : If there is a concurrent conflicting insert, then both will get enable=DISABLED when both cleared the step-3 and get such overlapping entry.
If the transaction-isolation level is READ-COMMITTED then this will only work IF each step is a transaction, rather whole process as one transaction.
If the transaction-isolation level is READ-UNCOMMITTED then this can be taken up as one transaction, with DISABLED state can be taken as a ROLLBACK step too.
APPROACH-3
Using Trigger Based solution as I am using POSTGRES, I can add a trigger for each insert operation, post insert where I check for such overlapping entry, if there is none, then I update the row to have enable=TRUE
CREATE OR REPLACE FUNCTION enable_if_unique()
RETURNS TRIGGER AS $$
BEGIN
IF (TG_OP = 'INSERT') THEN
UPDATE experiment
SET NEW.enable=true
WHERE (SELECT count(1)
FROM experiment
WHERE enable= true AND location_Ids && OLD.location_ids AND (OLD.timeStart, OLD.timeEnd) OVERLAPS (timeStart, timeEnd)
) = 0;
RETURN NEW;
END IF;
END;
$$ LANGUAGE 'plpgsql';
CREATE TRIGGER enable_if_unique_trigger BEFORE INSERT ON experiment FOR EACH ROW EXECUTE PROCEDURE enable_if_unique();
I am not sure about Approach 3 because I feel it require trigger to act in a serial manner for each insert operation so that one of the Experiment is actually enabled while rest of overlapping ones are disabled.
APPROACH-4
From online search for other possible solution, I See Inserts taken up using Select Statement and the WHERE clause helping to add the required condition.
INSERT INTO experiment(id, name, locationIds, timeStart, timeEnd)
SELECT 1, 'exp-1', ARRAY[123,234,345], '2020-03-13 12:00:00'
WHERE (
SELECT count(1)
FROM EXPERIMENT
WHERE enable= true
AND
location_Ids && OLD.location_ids
AND
(OLD.timeStart, OLD.timeEnd) OVERLAPS (timeStart, timeEnd)
) = 0;
I feel there is still possibility of consistency issue as both concurrent operations will not be able to read each in the SELECT statement checking the constraint.
Final APPROACH : APPROACH-2
I like to know following things :
Which is the best approach in terms of scalability and high-throughput ?
Which approach is actually making the sure the data consistency is maintained?
Any Other Approach that I could have used and missed here!!!
Newbie To POSTGRES, Will APPRECIATE example OR links
as mentioned by #a_horse_with_no_name
we can use exclusion constraint :
-- this prevents overlaps in the locationids AND the time range
alter table experiment
add constraint no_overlap
exclude using gist (locationids with &&, tsrange(timestart, timeend) with &&);

postgres high CPU usage on after insert trigger

I have an application where I receive a stream of ticks (buys or sells of a commodity) and am trying to generate a table of minutely OHLC (open, high, low, close) columns with this data. The reason I am creating these in a table rather than deriving them from the tick table is due to the high volume of ticks I get (10000000 per day). Using this strategy I can delete all the ticks from the database on a schedule to keep my database size manageable.
My schema is roughly equivalent to this (unnecessary columns remove for brevity).
CREATE TABLE tick (
executed TIMESTAMP WITH TIME ZONE NOT NULL,
price NUMERIC
);
CREATE TABLE ohlc_minute (
created TIMESTAMP WITH TIME ZONE NOT NULL PRIMARY KEY,
open NUMERIC,
high NUMERIC,
low NUMERIC,
close NUMERIC,
);
My idea was to create an after insert trigger on tick which computes the last minute of OHLC and upserts this into the ohlc_minute table but with this trigger enabled the cpu usage on the database jumps to 100% almost instantly.
CREATE OR REPLACE FUNCTION update_ohlc()
RETURNS trigger AS
$BODY$
BEGIN
INSERT INTO ohlc_minute (created, open, high, low, close)
SELECT
date_trunc('minute', NEW.executed) executed,
(array_agg(price ORDER BY executed ASC))[1] as open,
MAX(price) as high,
MIN(price) as low,
(array_agg(price ORDER BY executed DESC))[1] as close
FROM tick
WHERE executed BETWEEN date_trunc('minute', NEW.executed) AND date_trunc('minute', NEW.executed) + interval '1 Min'
ON CONFLICT (created)
DO UPDATE
SET open = EXCLUDED.open, high=EXCLUDED.high, low=EXCLUDED.low, close=EXCLUDED.close;
RETURN NEW;
END;
$BODY$
LANGUAGE plpgsql;
CREATE TRIGGER tick_insert
AFTER INSERT
ON tick
FOR EACH ROW
EXECUTE PROCEDURE update_ohlc();
One possibly alternative I have is just to run an equivalent function manually on a schedule to update all ohlc bars but I like the idea of always having up to date partial (eg current bar less than one minute) ohlc information available. Is there any easy optimisations I can make to lower the CPU usage of my trigger function?
Are ticks guaranteed to arrive in order? If the insert succeeds, than your aggregation had been done over only one row, so the answer to all aggregations is just the price. If the insert conflicts, then you should be able to compute each value based on the just the existing and the excluded one.
CREATE OR REPLACE FUNCTION update_ohlc()
RETURNS trigger AS
$BODY$
BEGIN
INSERT INTO ohlc_minute (created, open, high, low, close)
values (
date_trunc('minute', NEW.executed),
NEW.price,
NEW.price,
NEW.price,
NEW.price
)
ON CONFLICT (created)
DO UPDATE
SET high=greatest(ohlc_minute.high,EXCLUDED.high),
low=least(ohlc_minute.low,EXCLUDED.low),
close=EXCLUDED.close;
RETURN NEW;
END;
$BODY$
LANGUAGE plpgsql;
If they are not guaranteed to arrive in order, then I think your current solution would be about optimal, if you insist on having partial results available within the accruing minute.
I solved my own problem, the answer was the obvious not having an index, I created an index
CREATE INDEX IF NOT EXISTS execute_index ON tick (executed);
and CPU usage has fallen to an acceptable level, I would however still be interested to see optimized solutions.

How to check a sequence efficiently for used and unused values in PostgreSQL

In PostgreSQL (9.3) I have a table defined as:
CREATE TABLE charts
( recid serial NOT NULL,
groupid text NOT NULL,
chart_number integer NOT NULL,
"timestamp" timestamp without time zone NOT NULL DEFAULT now(),
modified timestamp without time zone NOT NULL DEFAULT now(),
donotsee boolean,
CONSTRAINT pk_charts PRIMARY KEY (recid),
CONSTRAINT chart_groupid UNIQUE (groupid),
CONSTRAINT charts_ichart_key UNIQUE (chart_number)
);
CREATE TRIGGER update_modified
BEFORE UPDATE ON charts
FOR EACH ROW EXECUTE PROCEDURE update_modified();
I would like to replace the chart_number with a sequence like:
CREATE SEQUENCE charts_chartnumber_seq START 16047;
So that by trigger or function, adding a new chart record automatically generates a new chart number in ascending order. However, no existing chart record can have its chart number changed and over the years there have been skips in the assigned chart numbers. Hence, before assigning a new chart number to a new chart record, I need to be sure that the "new" chart number has not yet been used and any chart record with a chart number is not assigned a different number.
How can this be done?
Consider not doing it. Read these related answers first:
Gap-less sequence where multiple transactions with multiple tables are involved
Compacting a sequence in PostgreSQL
If you still insist on filling in gaps, here is a rather efficient solution:
1. To avoid searching large parts of the table for the next missing chart_number, create a helper table with all current gaps once:
CREATE TABLE chart_gap AS
SELECT chart_number
FROM generate_series(1, (SELECT max(chart_number) - 1 -- max is no gap
FROM charts)) chart_number
LEFT JOIN charts c USING (chart_number)
WHERE c.chart_number IS NULL;
2. Set charts_chartnumber_seq to the current maximum and convert chart_number to an actual serial column:
SELECT setval('charts_chartnumber_seq', max(chart_number)) FROM charts;
ALTER TABLE charts
ALTER COLUMN chart_number SET NOT NULL
, ALTER COLUMN chart_number SET DEFAULT nextval('charts_chartnumber_seq');
ALTER SEQUENCE charts_chartnumber_seq OWNED BY charts.chart_number;
Details:
How to reset postgres' primary key sequence when it falls out of sync?
Safely and cleanly rename tables that use serial primary key columns in Postgres?
3. While chart_gap is not empty fetch the next chart_number from there.
To resolve possible race conditions with concurrent transactions, without making transactions wait, use advisory locks:
WITH sel AS (
SELECT chart_number, ... -- other input values
FROM chart_gap
WHERE pg_try_advisory_xact_lock(chart_number)
LIMIT 1
FOR UPDATE
)
, ins AS (
INSERT INTO charts (chart_number, ...) -- other target columns
TABLE sel
RETURNING chart_number
)
DELETE FROM chart_gap c
USING ins i
WHERE i.chart_number = c.chart_number;
Alternatively, Postgres 9.5 or later has the handy FOR UPDATE SKIP LOCKED to make this simpler and faster:
...
SELECT chart_number, ... -- other input values
FROM chart_gap
LIMIT 1
FOR UPDATE SKIP LOCKED
...
Detailed explanation:
Postgres UPDATE ... LIMIT 1
Check the result. Once all rows are filled in, this returns 0 rows affected. (you could check in plpgsql with IF NOT FOUND THEN ...). Then switch to a simple INSERT:
INSERT INTO charts (...) -- don't list chart_number
VALUES (...); -- don't provide chart_number
In PostgreSQL, a SEQUENCE ensures the two requirements you mention, that is:
No repeats
No changes once assigned
But because of how a SEQUENCE works (see manual), it can not ensure no-skips. Among others, the first two reasons that come to mind are:
How a SEQUENCE handles concurrent blocks with INSERTS (you could also add that the concept of Cache also makes this impossible)
Also, user triggered DELETEs are an uncontrollable aspect that a SEQUENCE can not handle by itself.
In both cases, if you still do not want skips, (and if you really know what you're doing) you should have a separate structure that assign IDs (instead of using SEQUENCE). Basically a system that has a list of 'assignable' IDs stored in a TABLE that has a function to pop out IDs in a FIFO way. That should allow you to control DELETEs etc.
But again, this should be attempted, only if you really know what you're doing! There's a reason why people don't do SEQUENCEs themselves. There are hard corner-cases (for e.g. concurrent INSERTs) and most probably you're over-engineering your problem case, that probably can be solved in a much better / cleaner way.
Sequence numbers usually have no meaning, so why worry? But if you really want this, then follow the below, cumbersome procedure. Note that it is not efficient; the only efficient option is to forget about the holes and use the sequence.
In order to avoid having to scan the charts table on every insert, you should scan the table once and store the unused chart_number values in a separate table:
CREATE TABLE charts_unused_chart_number AS
SELECT seq.unused
FROM (SELECT max(chart_number) FROM charts) mx,
generate_series(1, mx(max)) seq(unused)
LEFT JOIN charts ON charts.chart_number = seq.unused
WHERE charts.recid IS NULL;
The above query generates a contiguous series of numbers from 1 to the current maximum chart_number value, then LEFT JOINs the charts table to it and find the records where there is no corresponding charts data, meaning that value of the series is unused as a chart_number.
Next you create a trigger that fires on an INSERT on the charts table. In the trigger function, pick a value from the table created in the step above:
CREATE FUNCTION pick_unused_chart_number() RETURNS trigger AS $$
BEGIN
-- Get an unused chart number
SELECT unused INTO NEW.chart_number FROM charts_unused_chart_number LIMIT 1;
-- If the table is empty, get one from the sequence
IF NOT FOUND THEN
NEW.chart_number := next_val(charts_chartnumber_seq);
END IF;
RETURN NEW;
END;
$$ LANGUAGE plpgsql;
CREATE TRIGGER tr_charts_cn
BEFORE INSERT ON charts
FOR EACH ROW EXECUTE PROCEDURE pick_unused_chart_number();
Easy. But the INSERT may fail because of some other trigger aborting the procedure or any other reason. So you need a check to ascertain that the chart_number was indeed inserted:
CREATE FUNCTION verify_chart_number() RETURNS trigger AS $$
BEGIN
-- If you get here, the INSERT was successful, so delete the chart_number
-- from the temporary table.
DELETE FROM charts_unused_chart_number WHERE unused = NEW.chart_number;
END;
$$ LANGUAGE plpgsql;
CREATE TRIGGER tr_charts_verify
AFTER INSERT ON charts
FOR EACH ROW EXECUTE PROCEDURE verify_chart_number();
At a certain point the table with unused chart numbers will be empty whereupon you can (1) ALTER TABLE charts to use the sequence instead of an integer for chart_number; (2) delete the two triggers; and (3) the table with unused chart numbers; all in a single transaction.
While what you want is possible, it can't be done using only a SEQUENCE and it requires an exclusive lock on the table, or a retry loop, to work.
You'll need to:
LOCK thetable IN EXCLUSIVE MODE
Find the first free ID by querying for the max id then doing a left join over generate_series to find the first free entry. If there is one.
If there is a free entry, insert it.
If there is no free entry, call nextval and return the result.
Performance will be absolutely horrible, and transactions will be serialized. There'll be no concurrency. Also, unless the LOCK is the first thing you run that affects that table, you'll face deadlocks that cause transaction aborts.
You can make this less bad by using an AFTER DELETE .. FOR EACH ROW trigger that keeps track of entries you delete by INSERTing them into a one-column table that keeps track of spare IDs. You can then SELECT the lowest ID from the table in your ID assignment function on the default for the column, avoiding the need for the explicit table lock, the left join on generate_series and the max call. Transactions will still be serialized on a lock on the free IDs table. In PostgreSQL you can even solve that using SELECT ... FOR UPDATE SKIP LOCKED. So if you're on 9.5 you can actually make this non-awful, though it'll still be slow.
I strongly advise you to just use a SEQUENCE directly, and not bother with re-using values.

PostgreSQL, triggers, and concurrency to enforce a temporal key

I want to define a trigger in PostgreSQL to check that the inserted row, on a generic table, has the the property: "no other row exists with the same key in the same valid time" (the keys are sequenced keys). In fact, I has already implemented it. But since the trigger has to scan the entire table, now i'm wondering: is there a need for a table-level lock? Or this is managed someway by the PostgreSQL itself?
Here is an example.
In the upcoming PostgreSQL 9.0 I would have defined the table in this way:
CREATE TABLE medicinal_products
(
aic_code CHAR(9), -- sequenced key
full_name VARCHAR(255),
market_time PERIOD,
EXCLUDE USING gist
(aic_code CHECK WITH =,
market_time CHECK WITH &&)
);
but in fact I have been defined it like this:
CREATE TABLE medicinal_products
(
PRIMARY KEY (aic_code, vs),
aic_code CHAR(9), -- sequenced key
full_name VARCHAR(255),
vs DATE NOT NULL,
ve DATE,
CONSTRAINT valid_time_range
CHECK (ve > vs OR ve IS NULL)
);
Then, I have written a trigger that check the costraint: "two distinct medicinal products can have the same code in two different periods, but not in same time".
So the code:
INSERT INTO medicinal_products VALUES ('1','A','2010-01-01','2010-04-01');
INSERT INTO medicinal_products VALUES ('1','A','2010-03-01','2010-06-01');
return an error.
One solution is to have a second table to use for detecting clashes, and populate that with a trigger. Using the schema you added into the question:
CREATE TABLE medicinal_product_date_map(
aic_code char(9) NOT NULL,
applicable_date date NOT NULL,
UNIQUE(aic_code, applicable_date));
(note: this is the second attempt due to misreading your requirement the first time round. hope it's right this time).
Some functions to maintain this table:
CREATE FUNCTION add_medicinal_product_date_range(aic_code_in char(9), start_date date, end_date date)
RETURNS void STRICT VOLATILE LANGUAGE sql AS $$
INSERT INTO medicinal_product_date_map
SELECT $1, $2 + offset
FROM generate_series(0, $3 - $2)
$$;
CREATE FUNCTION clr_medicinal_product_date_range(aic_code_in char(9), start_date date, end_date date)
RETURNS void STRICT VOLATILE LANGUAGE sql AS $$
DELETE FROM medicinal_product_date_map
WHERE aic_code = $1 AND applicable_date BETWEEN $2 AND $3
$$;
And populate the table first time with:
SELECT count(add_medicinal_product_date_range(aic_code, vs, ve))
FROM medicinal_products;
Now create triggers to populate the date map after changes to medicinal_products: after insert calls add_, after update calls clr_ (old values) and add_ (new values), after delete calls clr_.
CREATE FUNCTION sync_medicinal_product_date_map()
RETURNS trigger LANGUAGE plpgsql AS $$
BEGIN
IF TG_OP = 'UPDATE' OR TG_OP = 'DELETE' THEN
PERFORM clr_medicinal_product_date_range(OLD.aic_code, OLD.vs, OLD.ve);
END IF;
IF TG_OP = 'UPDATE' OR TG_OP = 'INSERT' THEN
PERFORM add_medicinal_product_date_range(NEW.aic_code, NEW.vs, NEW.ve);
END IF;
RETURN NULL;
END;
$$;
CREATE TRIGGER sync_date_map
AFTER INSERT OR UPDATE OR DELETE ON medicinal_products
FOR EACH ROW EXECUTE PROCEDURE sync_medicinal_product_date_map();
The uniqueness constraint on medicinal_product_date_map will trap any products being added with the same code on the same day:
steve#steve#[local] =# INSERT INTO medicinal_products VALUES ('1','A','2010-01-01','2010-04-01');
INSERT 0 1
steve#steve#[local] =# INSERT INTO medicinal_products VALUES ('1','A','2010-03-01','2010-06-01');
ERROR: duplicate key value violates unique constraint "medicinal_product_date_map_aic_code_applicable_date_key"
DETAIL: Key (aic_code, applicable_date)=(1 , 2010-03-01) already exists.
CONTEXT: SQL function "add_medicinal_product_date_range" statement 1
SQL statement "SELECT add_medicinal_product_date_range(NEW.aic_code, NEW.vs, NEW.ve)"
PL/pgSQL function "sync_medicinal_product_date_map" line 6 at PERFORM
This depends on the values being checked for having a discrete space- which is why I asked about dates vs timestamps. Although timestamps are, technically, discrete since Postgresql only stores microsecond-resolution, adding an entry to the map table for every microsecond the product is applicable for is not practical.
Having said that, you could probably also get away with something better than a full-table scan to check for overlapping timestamp intervals, with some trickery on looking for only the first interval not after or not before... however, for easy discrete spaces I prefer this approach which IME can also be handy for other things too (e.g. reports that need to quickly find which products are applicable on a certain day).
I also like this approach because it feels right to leverage the database's uniqueness-constraint mechanism this way. Also, I feel it will be more reliable in the context of concurrent updates to the master table: without locking the table against concurrent updates, it would be possible for a validation trigger to see no conflict and allow inserts in two concurrent sessions, that are then seen to conflict when both transaction's effects are visible.
Just a thought, in case the valid time blocks could be coded with a number or something, creating a UNIQUE index on Id+TimeBlock would be blazingly fast and resolve all table lock problems.
It is managed by PostgreSQL itself. On a select it acquires an ACCESS_SHARE lock which means that you can query the table but do not perform updates.
A radical solution which might help you is to use a cache like ehcache or memcached to store the id/timeblock info and not use the postgresql at all. Many can be persisted so they would survive a server restart and they do not exhibit this locking behavior.
Why can't you use a UNIQUE constraint? Will be much faster (it's an index) and easier.