how to deal with ambiguos column in nested json in Apache Spark - scala

I have below nested JSON with ambiguous column. Basically, the objective is to rename one of the duplicated columns after reading
[
{
"name": "Nish",
"product": "Headphone",
"Delivery": {
"name": "Nisha",
"address": "Chennai",
"mob": "1234567"
}
}
]
val spark = SparkSession.builder.master("local")
.appName("dealWithAmbigousColumnNestedJson").getOrCreate()
val readJson = spark.read.option("multiLine", true).json("input1.json")
val dropDF = readJson.select("*","Delivery.*").drop("Delivery")
I attempted till here but don't know how to proceed further.

You can simply use withColumnRenamed and change the name of one or both of those columns:
readJson.withColumnRenamed("name", "buyer_name")
.select("*","Delivery.*")
.withColumnRenamed("name", "delivery_name")
.drop("Delivery")
.show()
Which gives:
+----------+---------+-------+-------+-------------+
|buyer_name| product|address| mob|delivery_name|
+----------+---------+-------+-------+-------------+
| Nish|Headphone|Chennai|1234567| Nisha|
+----------+---------+-------+-------+-------------+

Related

Splitting an array containing nested arrays using Scala in Azure Databricks

I'm currently working on a project where I'm having to extract some horribly nested data out of a json document (output from Log Analytics REST API call), document structure example below (I have a lot more columns):
{
"tables": [
{
"name": "PrimaryResult",
"columns": [
{
"name": "Category",
"type": "string"
},
{
"name": "count_",
"type": "long"
}
],
"rows": [
[
"Administrative",
20839
],
[
"Recommendation",
122
],
[
"Alert",
64
],
[
"ServiceHealth",
11
]
]
}
] }
I have managed to extract this json document into a data frame but I am stumped as to where to go from here.
The goal I am trying to achieve is an output like the below:
[{
"Category": "Administrative",
"count_": 20839
},
{
"Category": "Recommendation",
"count_": 122
},
{
"Category": "Alert",
"count_": 64
},
{
"Category": "ServiceHealth",
"count_": 11
}]
Ideally, I would like to use my columns array as the headers for each record. Then I want to split out each record array from the parent rows array in to its own record.
So far, I have tried flattening my raw imported data frame but this won't work as the rows data is an array of arrays.
How would I go about solving this conundrum?
It's a bit messy to deal with this, but here's a way to do it:
val df = spark.read.option("multiline",true).json("filepath")
val result = df.select(explode($"tables").as("tables"))
.select($"tables.columns".as("col"), explode($"tables.rows").as("row"))
.selectExpr("inline(arrays_zip(col, row))")
.groupBy()
.pivot($"col.name")
.agg(collect_list($"row"))
.selectExpr("inline(arrays_zip(Category, count_))")
result.show
+--------------+------+
| Category|count_|
+--------------+------+
|Administrative| 20839|
|Recommendation| 122|
| Alert| 64|
| ServiceHealth| 11|
+--------------+------+
To get the JSON output, you can do
val result_json = result.agg(to_json(collect_list(struct("Category", "count_"))).as("json"))
result_json.show(false)
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|json |
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|[{"Category":"Administrative","count_":"20839"},{"Category":"Recommendation","count_":"122"},{"Category":"Alert","count_":"64"},{"Category":"ServiceHealth","count_":"11"}]|
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Or you can save as JSON, e.g. with result.save.json("output").
Another way using transform function :
import org.apache.spark.sql.functions._
val df = spark.read.option("multiline",true).json(inPath)
val df1 = df.withColumn("tables", explode($"tables"))
.select($"tables.rows".as("rows"))
.select(expr("inline(transform(rows, x -> struct(x[0] as Category, x[1] as _count)))"))
df1.show
//+--------------+------+
//| Category|_count|
//+--------------+------+
//|Administrative| 20839|
//|Recommendation| 122|
//| Alert| 64|
//| ServiceHealth| 11|
//+--------------+------+
Then saving into json file:
df1.save.json(outPath)

Spark 2.4.7 ignoring null fields while writing to JSON [duplicate]

I am trying to write a JSON file using spark. There are some keys that have null as value. These show up just fine in the DataSet, but when I write the file, the keys get dropped. How do I ensure they are retained?
code to write the file:
ddp.coalesce(20).write().mode("overwrite").json("hdfs://localhost:9000/user/dedupe_employee");
part of JSON data from source:
"event_header": {
"accept_language": null,
"app_id": "App_ID",
"app_name": null,
"client_ip_address": "IP",
"event_id": "ID",
"event_timestamp": null,
"offering_id": "Offering",
"server_ip_address": "IP",
"server_timestamp": 1492565987565,
"topic_name": "Topic",
"version": "1.0"
}
Output:
"event_header": {
"app_id": "App_ID",
"client_ip_address": "IP",
"event_id": "ID",
"offering_id": "Offering",
"server_ip_address": "IP",
"server_timestamp": 1492565987565,
"topic_name": "Topic",
"version": "1.0"
}
In the above example keys accept_language, app_name and event_timestamp have been dropped.
Apparently, spark does not provide any option to handle nulls. So following custom solution should work.
import com.fasterxml.jackson.module.scala.DefaultScalaModule
import com.fasterxml.jackson.module.scala.experimental.ScalaObjectMapper
import com.fasterxml.jackson.databind.ObjectMapper
case class EventHeader(accept_language:String,app_id:String,app_name:String,client_ip_address:String,event_id: String,event_timestamp:String,offering_id:String,server_ip_address:String,server_timestamp:Long,topic_name:String,version:String)
val ds = Seq(EventHeader(null,"App_ID",null,"IP","ID",null,"Offering","IP",1492565987565L,"Topic","1.0")).toDS()
val ds1 = ds.mapPartitions(records => {
val mapper = new ObjectMapper with ScalaObjectMapper
mapper.registerModule(DefaultScalaModule)
records.map(mapper.writeValueAsString(_))
})
ds1.coalesce(1).write.text("hdfs://localhost:9000/user/dedupe_employee")
This will produce output as :
{"accept_language":null,"app_id":"App_ID","app_name":null,"client_ip_address":"IP","event_id":"ID","event_timestamp":null,"offering_id":"Offering","server_ip_address":"IP","server_timestamp":1492565987565,"topic_name":"Topic","version":"1.0"}
If you are on Spark 3, you can add
spark.sql.jsonGenerator.ignoreNullFields false
ignoreNullFields is an option to set when you want DataFrame converted to json file since Spark 3.
If you need Spark 2 (specifically PySpark 2.4.6), you can try converting DataFrame to rdd with Python dict format. And then call pyspark.rdd.saveTextFile to output json file to hdfs. The following example may help.
cols = ddp.columns
ddp_ = ddp.rdd
ddp_ = ddp_.map(lambda row: dict([(c, row[c]) for c in cols])
ddp_ = ddp.repartition(1).saveAsTextFile(your_hdfs_file_path)
This should produce output file like,
{"accept_language": None, "app_id":"123", ...}
{"accept_language": None, "app_id":"456", ...}
What's more, if you want to replace Python None with JSON null, you will need to dump every dict into json.
ddp_ = ddp_.map(lambda row: json.dumps(row, ensure.ascii=False))
Since Spark 3, and if you are using the class DataFrameWriter
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/DataFrameWriter.html#json-java.lang.String-
(same applies for pyspark)
https://spark.apache.org/docs/3.0.0-preview/api/python/_modules/pyspark/sql/readwriter.html
its json method has an option ignoreNullFields=None
where None means True.
So just set this option to false.
ddp.coalesce(20).write().mode("overwrite").option("ignoreNullFields", "false").json("hdfs://localhost:9000/user/dedupe_employee")
To retain null values converting to JSON please set this config option.
spark = (
SparkSession.builder.master("local[1]")
.config("spark.sql.jsonGenerator.ignoreNullFields", "false")
).getOrCreate()

How to read a JSON file into a Map, using Scala

How can I read a JSON file into a Map, using Scala. I've been trying to accomplish this but the JSON I am reading is nested JSon and I have not found a way to easily extract the JSON into keys because of that. Scala seems to be wanting to also convert the nested JSON String into an object. Instead, I want the nested JSON as a String "value". I am hoping someone can clarify or give me a hint on how I might do this.
My JSON source might look something like this:
{
"authKey": "34534645645653455454363",
"member": {
"memberId": "whatever",
"firstName": "Jon",
"lastName": "Doe",
"address": {
"line1": "Whatever Rd",
"city": "White Salmon",
"state": "WA",
"zip": "98672"
},
"anotherProp": "wahtever",
}
}
I want to extract this JSON into a Map of 2 keys without drilling into the nested JSON. Is this possible? Once I have the Map, my intention is to add the key-values to my POST request headers, like so:
val sentHeaders = Map("Content-Type" -> "application/javascript",
"Accept" -> "text/html", "authKey" -> extractedValue,
"member" -> theMemberInfoAsStringJson)
http("Custom headers")
.post("myUrl")
.headers(sentHeaders)
Since the question is tagged 'gatling', behind the curtains this lib depends on Jackson/fasterxml for JSON processing, so we can make use of it.
There is no way to retrieve a nested structured part of JSON as String directly, but with very few additional code the result can still be achieved.
So, having the input JSON:
val json = """{
| "authKey": "34534645645653455454363",
| "member": {
| "memberId": "whatever",
| "firstName": "Jon",
| "lastName": "Doe",
| "address": {
| "line1": "Whatever Rd",
| "city": "White Salmon",
| "state": "WA",
| "zip": "98672"
| },
| "anotherProp": "wahtever"
| }
|}""".stripMargin
A Jackson's ObjectMapper can be created and configured for use in Scala:
// import com.fasterxml.jackson.module.scala.DefaultScalaModule
val mapper = new ObjectMapper().registerModule(DefaultScalaModule)
To parse the input json easily, a dedicated case class is useful:
case class SrcJson(authKey: String, member: Any) {
val memberAsString = mapper.writeValueAsString(member)
}
We also include val memberAsString in it, which will contain our target JSON string, obtained through a reverse conversion from initially parsed member which actually is a Map.
Now, to parse the input json:
val parsed = mapper.readValue(json, classOf[SrcJson])
The references parsed.authKey and parsed.memberAsString will contain the researched values.
have a look at the scala play library - it has support for handling JSON. From what you describe, it should be pretty straightforward to read in the JSON and get the string value from any desired node.
Scala Play - JSON

spark parse json field and match to different case class

I have some json like below, when I loaded this json some fields is string of json,
How to parse this json using spark scala and look for the key words I am looking for in that json
{"main":"{\"payload\": { \"mode\": [\"Node\"], \"currentSatate\": \"Ready\", \"Previousstate\": \"slow\", \"trigger\": [\"11\", \"12\"], \"AllStates\": [\"Ready\", \"slow\", \"fast\", \"new\"],\"UnusedStates\": [\"slow\", \"new\"],\"Percentage\": \"70\",\"trigger\": [\"11\"]}"}
{"main":"{\"payload\": {\"trigger\": [\"11\", \"22\"],\"mode\": [\"None\"],\"cangeState\": \"Open\"}}"}
{"main":"{\"payload\": { \"trigger\": [\"23\", \"45\"], \"mode\": [\"Edge\"], \"node.postions\": [\"12\", \"23\", \"45\", \"67\"], \"node.names\": [\"aa\", \"bb\", \"cc\", \"dd\"]}}" }
This is how its looking after loading in to data frame
val df = spark.read.json("<pathtojson")
df.show(false)
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|main |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|{"payload": { "mode": ["Node"], "currentSatate": "Ready", "Previousstate": "slow", "trigger": ["11", "12"], "AllStates": ["Ready", "slow", "fast", "new"],"UnusedStates": ["slow", "new"],"Percentage": "70","trigger": ["11"]}|
|{"payload": {"trigger": ["11", "22"],"mode": ["None"],"cangeState": "Open"}} |
|{"payload": { "trigger": ["23", "45"], "mode": ["Edge"], "node.postions": ["12", "23", "45", "67"], "node.names": ["aa", "bb", "cc", "dd"]}} |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Since my json filed is different for all the 3 json strings , is there a way to match define 3 case class and match
I know only matching to one class
val mapper = new ObjectMapper() with ScalaObjectMapper
mapper.registerModule(DefaultScalaModule)
val parsedJson = mapper.readValue[classname](jsonstring)
is there a way to create a multiple matching case class and match to any particular class ?
You are using Spark SQL, the first thing you have to do is to turn it into a dataset, and then use the spark's methods to deal with them. Don't use Json, all over the place (e.g., like in Play). The first task is to turn it into a dataset.
You could turn the serialize a Json into a case class:
val jsonFilePath: String = "/whatever/data.json"
val myDataSet = sparkSession.read.json(jsonFilePath).as[StudentRecord]
Then here you have the dataset for StudentRecord. So, you can now use the spark's groupBy method to get the data of the column you want from the dataset:
myDataSet.groupBy("whateverTable.whateverColumn").max() //could be min(), count(), etc...
Extra Note: Your Json, should "cleaned up" a little. For example, if it is within your program you can use the multi line way of declaring your Json, and then you don't need to use escape character all over the place:
val myJson: String =
"""
{
}
""".stripMargin
If it is in the file, then the Json you wrote is not correct. So first, make sure you have a syntactically correct Json to work on.

How to select child tag from JSON file using scala

Good Day!!
I am writing a Scala code to select the multiple child tag from json file however I am not getting exact solution. The code looks like below,
Code:
val spark = SparkSession.builder.master("local").appName("").config("spark.sql.warehouse.dir", "C:/temp").getOrCreate()
val df = spark.read.option("header", "true").json("C:/Users/Desktop/data.json").select("type", "city", "id","name")
println(df.show())
Data.json
{"claims":[
{ "type":"Part B",
"city":"Chennai",
"subscriber":[
{ "id":11 },
{ "name":"Harvey" }
] },
{ "type":"Part D",
"city":"Bangalore",
"subscriber":[
{ "id":12 },
{ "name":"andrew" }
] } ]}
Expected Result:
type city subscriber/0/id subscriber/1/name
Part B Chennai 11 Harvey
Part D Bangalore 12 Andrew
Please help me with the above code.
If I'm not mistaken Apache Spark expects each line to be a separate JSON object, so it will fail if you’ll try to load a pretty formatted JSON file.
https://spark.apache.org/docs/latest/sql-programming-guide.html#json-datasets
http://jsonlines.org/examples/