I'm using ReactiveMongo. I want to run a set of pipelines (i.e., use the Mongo aggregation framework) on a collection, and stream the results. I want to retrieve them as BSON documents.
I've seen examples that suggest something like:
coll.aggregatorContext[BSONDocument](pipelines.head, pipelines.tail).prepared[AkkaStreamCursor].cursor.documentSource()
This gets me a compilation error because I'm missing an implicit CursorProducer.Aux[BSONDocument, AkkaStreamCursor], but I have no idea how to import or construct one of these -- can't find examples. (Please don't refer me to the ReactiveMongo tests, as I can't see an example of this in them, or don't understand what I'm looking at if there is one.)
I should add that I'm using version 0.20.3 of ReactiveMongo.
If my issue is due to my choice of retrieving results as BSON focuments, and there's another type that would find an existing implicit CursorProducer.Aux, I'd happily switch if someone can tell me how to get this to compile?
So, IntelliJ is telling me that I'm missing an implicit for .prepared.
But, an sbt compile is telling me that my problem is that AkkaStreamCursor doesn't fulfill the type bounds of .prepared:
type arguments [reactivemongo.akkastream.AkkaStreamCursor] do not conform to method prepared's type parameter bounds [AC[_] <: reactivemongo.api.Cursor.WithOps[_]]
What ReactiveMongo type is available to use for this?
Related
I want to use sttp library with guice(with scalaguice wrapper) in my app. But seems it is not so easy to correctly bind things like SttpBackend[Try, Nothing]
SttpBackend.scala
Try[_] and Try[AnyRef] show some other errors, but still have no idea how it should be done correctly
the error I got:
kinds of the type arguments (scala.util.Try) do not conform to the expected kinds of the type parameters (type T).
[error] scala.util.Try's type parameters do not match type T's expected parameters:
[error] class Try has one type parameter, but type T has none
[error] bind[SttpBackend[Try, Nothing]].toProvider[SttpBackendProvider]
[error] ` ^
SttpBackendProvider looks like:
def get: SttpBackend[Try, Nothing] = TryHttpURLConnectionBackend(opts)
complete example in scastie
interesting that version scalaguice 4.1.0 show this error, but latest 4.2.2 shows error inside it with converting Nothing to JavaType
I believe you hit two different bugs in the Scala-Guice one of which is not fixed yet (and probably even not submitted yet).
To describe those issues I need a fast intro into how Guice and Scala-Guice work. Essentially what Guice do is have a mapping from type onto the factory method for an object of that type. To support some advanced features types are mapped onto some internal "keys" representation and then for each "key" Guice builds a way to construct a corresponding object. Also it is important that generics in Java are implemented using type erasure. That's why when you write something like:
bind(classOf[SttpBackend[Try, Nothing]]).toProvider(classOf[SttpBackendProvider])
in raw-Guice, the "key" actually becomes something like "com.softwaremill.sttp.SttpBackend". Luckily Guice developers have thought about this issue with generics and introduced TypeLiteral[T] so you can convey the information about generics.
Scala type system is more reach than in Java and it has some better reflection support from the compiler. Scala-Guice exploits it to map Scala-types on those more detailed keys automatically. Unfortunately it doesn't always work perfectly.
The first issue is the result of the facts that the type SttpBackend is defined as
trait SttpBackend[R[_], -S]
so it uses it expects its first parameter to be a type constructor; and that originally Scala-Guice used the scala.reflect.Manifest infrastructure. AFAIU such higher-kind types are not representable as Manifest and this is what the error in your question really says.
Luckily Scala has added a new scala.reflect.runtime.universe.TypeTag infrastructure to tackle this issue in a better and more consistent way and the Scala-Guice migrated to its usage. That's why with the newer version of Scala-Guice the compiler error goes away. Unfortunately there is another bug in the Scala-Guice that makes the code fail in runtime and it is a lack of handling of the Nothing Scala type. You see, the Nothing type is a kind of fake one on the JVM. It is one of the things where the Scala type system is more reach than the Java one. There is no direct mapping for Nothing in the JVM world. Luckily there is no way to create any value of the type Nothing. Unfortunately you still can create a classOf[Nothing]. The Scala-to-JVM compiler handles it by using an artificial scala.runtime.Nothing$. It is not a part of the public API, it is implementation details of specifically Scala over JVM. Anyway this means that the Nothing type needs additional handling when converting into the Guice TypeLiteral and there is none. There is for Any the cousin of Nothing but not for Nothing (see the usage of the anyType in TypeConversions.scala).
So there are really two workarounds:
Use raw Java-based syntax for Guice instead of the nice Scala-Guice one:
bind(new TypeLiteral[SttpBackend[Try, Nothing]]() {})
.toInstance(sttpBackend) // or to whatever
See online demo based on your example.
Patch the TypeConversions.scala in the Scala-Guice as in:
private[scalaguice] object TypeConversions {
private val mirror = runtimeMirror(getClass.getClassLoader)
private val anyType = typeOf[Any]
private val nothingType = typeOf[Nothing] // added
...
def scalaTypeToJavaType(scalaType: ScalaType): JavaType = {
scalaType.dealias match {
case `anyType` => classOf[java.lang.Object]
case `nothingType` => classOf[scala.runtime.Nothing$] //added
...
I tried it locally and it seems to fix your example. I didn't do any extensive tests so it might have broken something else.
I am writing an autocompleter (i.e., code completion like in Eclipse or IntelliJ) for a domain specific language that is a subset of Scala. Users frequently use implicit conversions to hide the more advanced features of Scala like options or Scalaz disjunctions.
I am looking for a way, either at compile time or runtime, to acquire a list of implicit conversions available for a receiver (i.e., for the ‘x’ in ‘val y = x.foo’). So, I have two specific questions:
Is there some library that, given the type of a receiver, can find all the implicit conversions that the compiler could use to turn that receiver into another type?*
How is the identification of available implicit conversions actually done by the Scala compiler? I am not sure where in the source to look to find it; some documentation about how the compiler does this or the location in the source where it does it would also be very helpful.
*: As you might have guessed, I plan to use the resulting list to get all the available fields and methods of all the types the given variable could be implicitly converted to so that the autocompleter can suggest them all to users. If there’s an even more direct way to do that, that would be great too.
In previous versions of Elastic4s you could do something like
val argument1: ArgumentCapture[DeleteIndexDefinition] = ???
verify(client).execute(argument1.capture())
assert(argument1 == ???)
val argument2: ArgumentCapture[IndexDefinition] = ???
verify(client, times(2)).execute(argument2.capture())
assert(argument2 == ???)
after several executions in your test (i.e. one DeleteIndexDefinition, followed of two IndexDefinition). And each verify would be matched against its type.
However, Elastic4s now takes an implicit parameter in its client.execute method. The parameter is of type Executable[T,R], which means you now need something like
val argument1: ArgumentCapture[DeleteIndexDefinition] = ???
verify(client).execute(argument1.capture())(any[Executable[DeleteIndexDefinition,R]])
assert(argument1 == ???)
val argument2: ArgumentCapture[IndexDefinition] = ???
verify(client, times(2)).execute(argument2.capture())(any[Executable[IndexDefinition,R]])
assert(argument2 == ???)
After doing that, I was getting an error. Mockito is considering both three client.execute in the first verify. Yes, even if the first parameter is of a different type.
That's because the implicit(the second parameter) has, after type erasure, the same type Executable.
So the asertions were failing. How to test in this setup?
The approach now taken in elastic4s to encapsulate the logic for executing each request type is one using typeclasses. This is why the implicit now exists. It help modularize each request type, and avoids the God class anti-pattern that was starting to creep into the ElasticClient class.
Two things I can think of that might help you:
What you already posted up, using Mockito and passing in the implicit as another matcher. This is how you can mock a method using implicits in general.
Not use mockito, but spool up a local embedded node, and try it against real data. This is my preferred approach when I write elasticsearch code. The advantages are that you're testing real queries against the real server, so not only checking that they are invoked, but that they actually work. (Some people might consider this an integration test, but whatever I don't agree, it all runs inside a single self contained test with no outside deps).
The latest release of elastic4s even include a testkit that makes it really easy to get the embedded node. You can look at almost any of the unit tests to give you an idea how to use it.
My solution was to create one verify with a generic type. It took me a while to realise that even if there is no common type, you always have AnyRef.
So, something like this works
val objs: ArgumentCaptor[AnyRef] = ArgumentCaptor.forClass(classOf[AnyRef])
verify(client, times(3)).execute(objs.capture())(any())
val values = objs.getAllValues
assert(values.get(0).isInstanceOf[DeleteIndexDefinition])
assert(values.get(1).isInstanceOf[IndexDefinition])
assert(values.get(2).isInstanceOf[IndexDefinition])
I've created both the question and the answer. But I'll consider other answers.
In groovy one can do:
class Foo {
Integer a,b
}
Map map = [a:1,b:2]
def foo = new Foo(map) // map expanded, object created
I understand that Scala is not in any sense of the word, Groovy, but am wondering if map expansion in this context is supported
Simplistically, I tried and failed with:
case class Foo(a:Int, b:Int)
val map = Map("a"-> 1, "b"-> 2)
Foo(map: _*) // no dice, always applied to first property
A related thread that shows possible solutions to the problem.
Now, from what I've been able to dig up, as of Scala 2.9.1 at least, reflection in regard to case classes is basically a no-op. The net effect then appears to be that one is forced into some form of manual object creation, which, given the power of Scala, is somewhat ironic.
I should mention that the use case involves the servlet request parameters map. Specifically, using Lift, Play, Spray, Scalatra, etc., I would like to take the sanitized params map (filtered via routing layer) and bind it to a target case class instance without needing to manually create the object, nor specify its types. This would require "reliable" reflection and implicits like "str2Date" to handle type conversion errors.
Perhaps in 2.10 with the new reflection library, implementing the above will be cake. Only 2 months into Scala, so just scratching the surface; I do not see any straightforward way to pull this off right now (for seasoned Scala developers, maybe doable)
Well, the good news is that Scala's Product interface, implemented by all case classes, actually doesn't make this very hard to do. I'm the author of a Scala serialization library called Salat that supplies some utilities for using pickled Scala signatures to get typed field information
https://github.com/novus/salat - check out some of the utilities in the salat-util package.
Actually, I think this is something that Salat should do - what a good idea.
Re: D.C. Sobral's point about the impossibility of verifying params at compile time - point taken, but in practice this should work at runtime just like deserializing anything else with no guarantees about structure, like JSON or a Mongo DBObject. Also, Salat has utilities to leverage default args where supplied.
This is not possible, because it is impossible to verify at compile time that all parameters were passed in that map.
I'm using Groovy for testing and Scala for actual code. Obviously I often use Scala's collection types - but when I generate test data in Groovy I often use the java.util.*-types.
I started writing static conversion methods based on the scalaj-collection library. But that's just not 'groovy'.
What's the best approach to convert one to the other?
Might implicit conversions work somehow?
UPDATE:
For example if I wouldn't manually convert the types I of course get:
groovy.lang.MissingMethodException:
No signature of method: static setup is applicable for argument types: (java.util.ArrayList)
Possible solutions: setup(scala.collection.immutable.List)
Did you try the "built-in" implicit conversions?
import scala.collection.JavaConversions._
Another approach is to change your Scala code to use Java collection types when declaring parameters and rely on implicit conversions in the method body to get the benefit of Scala collections operations.