Schema of input dataframe
- employeeKey (int)
- employeeTypeId (string)
- loginDate (string)
- employeeDetailsJson (string)
{"Grade":"100","ValidTill":"2021-12-01","Supervisor":"Alex","Vendor":"technicia","HourlyRate":29}
For Perm employees , some attributes are available and some not. Same for Contracting Employees.
So looking to find an efficient way to build dataframe based on only selected columns, as against transforming all columns and select the ones which I need.
Also please advise this is the best way to extract values from json string based on a key. As the attributes in the string are dynamic, I can not build StructSchema based on it. So using good old get_json_object.
(spark 2.45 and will use spark 3 in future)
val dfSelectColumns=List("Employee-Key", "Employee-Type","Login-Date","cont.Vendor-Name","cont.Hourly-Rate" )
//val dfSelectColumns=List("Employee-Key", "Employee-Type","Login-Date","perm.Level","perm-Validity","perm.Supervisor" )
val resultDF = inputDF.get
.withColumn("Employee-Key", col("employeeKey"))
.withColumn("Employee-Type", when(col("employeeTypeId") === 1, "Permanent")
.when(col("employeeTypeId") === 2, "Contractor")
.otherwise("unknown"))
.withColumn("Login-Date", to_utc_timestamp(to_timestamp(col("loginDate"), "yyyy-MM-dd'T'HH:mm:ss"), ""America/Chicago""))
.withColumn("perm.Level", get_json_object(col("employeeDetailsJson"), "$.Grade"))
.withColumn("perm.Validity", get_json_object(col("employeeDetailsJson"), "$.ValidTill"))
.withColumn("perm.SuperVisor", get_json_object(col("employeeDetailsJson"), "$.Supervisor"))
.withColumn("cont.Vendor-Name", get_json_object(col("employeeDetailsJson"), "$.Vendor"))
.withColumn("cont.Hourly-Rate", get_json_object(col("employeeDetailsJson"), "$.HourlyRate"))
.select(dfSelectColumns.head, dfSelectColumns.tail: _*)
I see that you have 2 schemas, one for Permanent and another for Contractor. You can have 2 schemas.
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions._
val schemaBase = new StructType().add("Employee-Key", IntegerType).add("Employee-Type", StringType).add("Login-Date", DateType)
val schemaPerm = schemaBase.add("Level", IntegerType).add("Validity", StringType)// Permanent attributes
val schemaCont = schemaBase.add("Vendor", StringType).add("HourlyRate", DoubleType) // Contractor attributes
Then you can use the 2 schemas to load the data into dataframe.
For Permanent Employee:
val jsonPermDf = Seq( // Construct sample dataframe
(2, """{"Employee-Key":2, "Employee-Type":"Permanent", "Login-Date":"2021-11-01", "Level":3, "Validity":"ok"}""")
, (3, """{"Employee-Key":3, "Employee-Type":"Permanent", "Login-Date":"2020-10-01", "Level":2, "Validity":"ok-yes"}""")
).toDF("key", "raw_json")
val permDf = jsonPermDf.withColumn("data", from_json(col("raw_json"),schemaPerm)).select($"data.*")
permDf.show()
For Contractor:
val jsonContDf = Seq( // Construct sample dataframe
(1, """{"Employee-Key":1, "Employee-Type":"Contractor", "Login-Date":"2021-12-01", "Vendor":"technicia", "HourlyRate":29}""")
, (4, """{"Employee-Key":4, "Employee-Type":"Contractor", "Login-Date":"2019-09-01", "Vendor":"Minis", "HourlyRate":35}""")
).toDF("key", "raw_json")
val contDf = jsonContDf.withColumn("data", from_json(col("raw_json"),schemaCont)).select($"data.*")
contDf.show()
This is the result datafrme for Permanent:
+------------+-------------+----------+-----+--------+
|Employee-Key|Employee-Type|Login-Date|Level|Validity|
+------------+-------------+----------+-----+--------+
| 2| Permanent|2021-11-01| 3| ok|
| 3| Permanent|2020-10-01| 2| ok-yes|
+------------+-------------+----------+-----+--------+
This is the result dataframe for Contractor:
+------------+-------------+----------+---------+----------+
|Employee-Key|Employee-Type|Login-Date| Vendor|HourlyRate|
+------------+-------------+----------+---------+----------+
| 1| Contractor|2021-12-01|technicia| 29.0|
| 4| Contractor|2019-09-01| Minis| 35.0|
+------------+-------------+----------+---------+----------+
If the schema of the JSON in employeeDetailsJson is unstable, you can still parse it into Map(String, String) type using from_json function with schema map<string,string>. Then you can explode the map column and pivot to get keys as columns.
Example:
val df1 = df.withColumn(
"employeeDetails",
from_json(col("employeeDetailsJson"), "map<string,string>")
).select(
col("employeeKey"),
col("employeeTypeId"),
col("loginDate"),
explode("employeeDetails")
).groupBy("employeeKey", "employeeTypeId", "loginDate")
.pivot("key")
.agg(first("value"))
df1.show()
//+-----------+--------------+---------------------+-----+----------+----------+----------+---------+
//|employeeKey|employeeTypeId|loginDate |Grade|HourlyRate|Supervisor|ValidTill |Vendor |
//+-----------+--------------+---------------------+-----+----------+----------+----------+---------+
//|1 |1 |2021-02-05'T'21:28:06|100 |29 |Alex |2021-12-01|technicia|
//+-----------+--------------+---------------------+-----+----------+----------+----------+---------+
Related
I have URL data in a column in my dataframe that I need to parse out parameters from the query string and create new columns for.
Sometimes the parameters will exist, sometimes they won't, and they aren't in a specific guaranteed order so I need to be able to find them by name. I am writing this in Qcala but can't get the syntax correct and would love some help.
My code:
val df = Seq(
(1, "https://www.mywebsite.com/dummyurl/single?originlatitude=35.0133612060147&originlongitude=-116.156211232302&origincountrycode=us&originstateprovincecode=ca&origincity=boston&originradiusmiles=250&datestart=2021-12-23t00%3a00%3a00"),
(2, "https://www.mywebsite.com/dummyurl/single?originlatitude=19.9141319141121&originlongitude=-56.1241881401291&origincountrycode=us&originstateprovincecode=pa&origincity=york&originradiusmiles=100&destinationlatitude=40.7811012268066&destinationlon")
).toDF("key", "URL")
val result = df
// .withColumn("param_name", $"URL")
.withColumn("parsed_url", explode(split(expr("parse_url(URL, 'QUERY')"), "&")))
.withColumn("parsed_url2", split($"parsed_url", "="))
// .withColumn("exampletest",$"URL".map(kv: String => (kv.split("=")(0), kv.split("=")(1))) )
.withColumn("Search_OriginLongitude", split($"URL","\\?"))
.withColumn("Search_OriginLongitude2", split($"Search_OriginLongitude"(1),"&"))
// .map(kv: Any => (kv.split("=")(0), kv.split("=")(1)))
// .toMap
// .get("originlongitude"))
display(result)
Desired Result:
+---+--------------------+--------------------+--------------------+
|KEY| URL| originlatitude | originlongitude |
+---+--------------------+--------------------+--------------------+
| 1|https://www.myweb...| 35.0133612060147 | -116.156211232302 |
| 2|https://www.myweb...| 19.9141319141121 | -56.1241881401291 |
+---+--------------------+--------------------+--------------------+
parse_url function can actually take a third parameter key for the query parameter name you want to extract, like this:
val result = df
.withColumn("Search_OriginLongitude", expr("parse_url(URL, 'QUERY', 'originlatitude')"))
.withColumn("Search_OriginLongitude2", expr("parse_url(URL, 'QUERY', 'originlongitude')"))
result.show
//+---+--------------------+----------------------+-----------------------+
//|key| URL|Search_OriginLongitude|Search_OriginLongitude2|
//+---+--------------------+----------------------+-----------------------+
//| 1|https://www.myweb...| 35.0133612060147| -116.156211232302|
//| 2|https://www.myweb...| 19.9141319141121| -56.1241881401291|
//+---+--------------------+----------------------+-----------------------+
Or you can use str_to_map function to create a map of parameter->value like this:
val result = df
.withColumn("URL", expr("str_to_map(split(URL,'[?]')[1],'&','=')"))
.withColumn("Search_OriginLongitude", col("URL").getItem("originlatitude"))
.withColumn("Search_OriginLongitude2", col("URL").getItem("originlongitude"))
Reading data from json(dynamic schema) and i'm loading that to dataframe.
Example Dataframe:
scala> import spark.implicits._
import spark.implicits._
scala> val DF = Seq(
(1, "ABC"),
(2, "DEF"),
(3, "GHIJ")
).toDF("id", "word")
someDF: org.apache.spark.sql.DataFrame = [number: int, word: string]
scala> DF.show
+------+-----+
|id | word|
+------+-----+
| 1| ABC|
| 2| DEF|
| 3| GHIJ|
+------+-----+
Requirement:
Column count and names can be anything. I want to read rows in loop to fetch each column one by one. Need to process that value in subsequent flows. Need both column name and value. I'm using scala.
Python:
for i, j in df.iterrows():
print(i, j)
Need the same functionality in scala and it column name and value should be fetched separtely.
Kindly help.
df.iterrows is not from pyspark, but from pandas. In Spark, you can use foreach :
DF
.foreach{_ match {case Row(id:Int,word:String) => println(id,word)}}
Result :
(2,DEF)
(3,GHIJ)
(1,ABC)
I you don't know the number of columns, you cannot use unapply on Row, then just do :
DF
.foreach(row => println(row))
Result :
[1,ABC]
[2,DEF]
[3,GHIJ]
And operate with row using its methods getAs etc
Hi Stackoverflow,
I want to remove all rows in a dataframe where column A matches any of the distinct values in column B. I would expect this code block to do exactly that, but it seems to remove values where column B is null as well, which is weird since the filter should only consider column A anyway. How can I fix this code to perform the expected behavior, which is remove all rows in a dataframe where column A matches any of the distinct values in column B.
import spark.implicits._
val df = Seq(
(scala.math.BigDecimal(1) , null),
(scala.math.BigDecimal(2), scala.math.BigDecimal(1)),
(scala.math.BigDecimal(3), scala.math.BigDecimal(4)),
(scala.math.BigDecimal(4), null),
(scala.math.BigDecimal(5), null),
(scala.math.BigDecimal(6), null)
).toDF("A", "B")
// correct, has 1, 4
val to_remove = df
.filter(
df.col("B").isNotNull
).select(
df("B")
).distinct()
// incorrect, returns 2, 3 instead of 2, 3, 5, 6
val final = df.filter(!df.col("A").isin(to_remove.col("B")))
// 4 != 2
assert(4 === final.collect().length)
isin function accepts a list. However, in your code, you're passing Dataset[Row]. As per documentation https://spark.apache.org/docs/1.6.0/api/scala/index.html#org.apache.spark.sql.Column#isin%28scala.collection.Seq%29
it's declared as
def isin(list: Any*): Column
You first need to extract the values into Sequence and then use that in isin function. Please, note that this may have performance implications.
scala> val to_remove = df.filter(df.col("B").isNotNull).select(df("B")).distinct().collect.map(_.getDecimal(0))
to_remove: Array[java.math.BigDecimal] = Array(1.000000000000000000, 4.000000000000000000)
scala> val finaldf = df.filter(!df.col("A").isin(to_remove:_*))
finaldf: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [A: decimal(38,18), B: decimal(38,18)]
scala> finaldf.show
+--------------------+--------------------+
| A| B|
+--------------------+--------------------+
|2.000000000000000000|1.000000000000000000|
|3.000000000000000000|4.000000000000000000|
|5.000000000000000000| null|
|6.000000000000000000| null|
+--------------------+--------------------+
Change filter condition !df.col("A").isin(to_remove.col("B")) to !df.col("A").isin(to_remove.collect.map(_.getDecimal(0)):_*)
Check below code.
val finaldf = df
.filter(!df
.col("A")
.isin(to_remove.map(_.getDecimal(0)).collect:_*)
)
scala> finaldf.show
+--------------------+--------------------+
| A| B|
+--------------------+--------------------+
|2.000000000000000000|1.000000000000000000|
|3.000000000000000000|4.000000000000000000|
|5.000000000000000000| null|
|6.000000000000000000| null|
+--------------------+--------------------+
I want to write a nested data structure consisting of a Map inside another Map using an array of a Scala case class.
The result should transform this dataframe:
|Value|Country| Timestamp| Sum|
+-----+-------+----------+----+
| 123| ITA|1475600500|18.0|
| 123| ITA|1475600516|19.0|
+-----+-------+----------+----+
into:
+--------------------------------------------------------------------+
|value |
+--------------------------------------------------------------------+
[{"value":123,"attributes":{"ITA":{"1475600500":18,"1475600516":19}}}]
+--------------------------------------------------------------------+
The actualResult dataset below gets me close but the structure isn't quite the same as my expected dataframe.
case class Record(value: Integer, attributes: Map[String, Map[String, BigDecimal]])
val actualResult = df
.map(r =>
Array(
Record(
r.getAs[Int]("Value"),
Map(
r.getAs[String]("Country") ->
Map(
r.getAs[String]("Timestamp") -> new BigDecimal(
r.getAs[Double]("Sum").toString
)
)
)
)
)
)
The Timestamp column in the actualResult dataset doesn't get combined together into the same Record row but rather creates two separate rows instead.
+----------------------------------------------------+
|value |
+----------------------------------------------------+
[{"value":123,"attributes":{"ITA":{"1475600516":19}}}]
[{"value":123,"attributes":{"ITA":{"1475600500":18}}}]
+----------------------------------------------------+
With the use of groupBy and collect_list by creatng combined column using struct I was able to get single row as below output.
val mycsv =
"""
|Value|Country|Timestamp|Sum
| 123|ITA|1475600500|18.0
| 123|ITA|1475600516|19.0
""".stripMargin('|').lines.toList.toDS()
val df: DataFrame = spark.read.option("header", true)
.option("sep", "|")
.option("inferSchema", true)
.csv(mycsv)
df.show
val df1 = df.
groupBy("Value","Country")
.agg( collect_list(struct(col("Country"), col("Timestamp"), col("Sum"))).alias("attributes")).drop("Country")
val json = df1.toJSON // you can save in to file
json.show(false)
Result combined 2 rows
+-----+-------+----------+----+
|Value|Country| Timestamp| Sum|
+-----+-------+----------+----+
|123.0|ITA |1475600500|18.0|
|123.0|ITA |1475600516|19.0|
+-----+-------+----------+----+
+----------------------------------------------------------------------------------------------------------------------------------------------+
|value |
+----------------------------------------------------------------------------------------------------------------------------------------------+
|{"Value":123.0,"attributes":[{"Country":"ITA","Timestamp":1475600500,"Sum":18.0},{"Country":"ITA","Timestamp":1475600516,"Sum":19.0}]}|
+----------------------------------------------------------------------------------------------------------------------------------------------+
I want to create DataFrame df that should look as simple as this:
+----------+----------+
| timestamp| col2|
+----------+----------+
|2018-01-11| 123|
+----------+----------+
This is what I do:
val values = List(List("timestamp", "2018-01-11"),List("col2","123")).map(x =>(x(0), x(1)))
val df = values.toDF
df.show()
And this is what I get:
+---------+----------+
| _1| _2|
+---------+----------+
|timestamp|2018-01-11|
| col2| 123|
+---------+----------+
What's wrong here?
Use
val df = List(("2018-01-11", "123")).toDF("timestamp", "col2")
toDF expects the input list to contain one entry per resulting Row
Each such entry should be a case class or a tuple
It does not expect column "headers" in the data itself (to name columns - pass names as arguments of toDF)
If you don't know the names of the columns statically you can use following syntax sugar
.toDF( columnNames: _*)
Where columnNames is the List with the names.
EDIT (sorry, I missed that you had the headers glued to each column).
Maybe something like this could work:
val values = List(
List("timestamp", "2018-01-11"),
List("col2","123")
)
val heads = values.map(_.head) // extracts headers of columns
val cols = values.map(_.tail) // extracts columns without headers
val rows = cols(0).zip(cols(1)) // zips two columns into list of rows
rows.toDF(heads: _*)
This would work if the "values" contained two longer lists, but it does not generalize to more lists.